/* Copyright (C) 2021 Fredrik Johansson This file is part of Arb. Arb is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include "arb_hypgeom.h" #include "acb_calc.h" #include "double_interval.h" /* Integrand (see comments for 1f1_integration): exp(f(t)) where f(z) = -z*t + a1*log(t) + ba1*log(1+t) g(u,v) = -z*u + 0.5*[a1*log(u^2+v^2) + ba1*log((1+u)^2+v^2)] d/du g(u,v) = -z + u*a1/(u^2+v^2) + (1+u)*ba1/(v^2+(1+u)^2) d/dv g(u,v) = v*a1/(u^2+v^2) + v*ba1/(v^2+(1+u)^2) */ static di_t di_integrand_edge(di_t u, di_t v, di_t a1, di_t ba1, di_t z) { di_t X, Y, Z; X = di_neg(di_fast_mul(z, u)); if (a1.a == 0.0 && a1.b == 0.0) Y = di_interval(0.0, 0.0); else Y = di_fast_mul(a1, di_fast_log_nonnegative(di_fast_add(di_fast_sqr(u), di_fast_sqr(v)))); Z = di_fast_mul(ba1, di_fast_log_nonnegative(di_fast_add(di_fast_sqr(di_fast_add_d(u, 1.0)), di_fast_sqr(v)))); return di_fast_add(X, di_fast_mul_d(di_fast_add(Y, Z), 0.5)); } /* which == 0 - d/du g(u,v) = -z + u*(a-1)/(u^2+v^2) + (u+1)*(b-a-1)/(v^2+(1+u)^2) which == 1 - d/dv g(u,v) = v*(a-1)/(u^2+v^2) + v*(b-a-1)/(v^2+(1+u)^2) */ static di_t di_integrand_edge_diff(di_t u, di_t v, di_t a1, di_t ba1, di_t z, int which) { di_t Y, Z; if (a1.a == 0.0 && a1.b == 0.0) Y = di_interval(0.0, 0.0); else Y = di_fast_div(a1, di_fast_add(di_fast_sqr(u), di_fast_sqr(v))); Z = di_fast_div(ba1, di_fast_add(di_fast_sqr(di_fast_add_d(u, 1.0)), di_fast_sqr(v))); if (which == 0) return di_fast_add(di_neg(z), di_fast_add(di_fast_mul(u, Y), di_fast_mul(di_fast_add_d(u, 1.0), Z))); else return di_fast_mul(v, di_fast_add(Y, Z)); } static di_t di_subinterval(di_t x, slong i, slong N) { di_t res; double step; step = (x.b - x.a) / N; res.a = x.a + step * i; res.b = (i == N - 1) ? x.b : x.a + step * (i + 1); return res; } static void integrand_wide_bound5(acb_t res, const acb_t t, const arb_t a1, const arb_t ba1, const arb_t z, slong prec) { slong i, N; di_t du, dv, da1, dba1, dz, dg, dgprime; double radius, bound; double start, end; int which; arb_t abound; N = 8; bound = -D_INF; da1 = arb_get_di(a1); dba1 = arb_get_di(ba1); dz = arb_get_di(z); /* left edge: left(u) + [0, right(v)] */ /* right edge: right(u) + [0, right(v)] */ for (which = 0; which < 2; which++) { du = arb_get_di(acb_realref(t)); if (which == 0) du.b = du.a; else du.a = du.b; dv = arb_get_di(acb_imagref(t)); start = 0.0; end = dv.b; for (i = 0; i < N; i++) { dv = di_subinterval(di_interval(start, end), i, N); radius = di_fast_ubound_radius(dv); /* g(u,mid(v)) + g'(u,v) * [0, radius] */ #if 1 dg = di_integrand_edge(du, di_fast_mid(dv), da1, dba1, dz); dgprime = di_integrand_edge_diff(du, dv, da1, dba1, dz, 1); dg = di_fast_add(dg, di_fast_mul(dgprime, di_interval(0.0, radius))); #else dg = di_integrand_edge(du, dv, da1, dba1, dz); #endif bound = FLINT_MAX(bound, dg.b); } } du = arb_get_di(acb_realref(t)); start = du.a; end = du.b; dv = arb_get_di(acb_imagref(t)); dv.a = dv.b; /* top edge: [left(u), right(u)] + right(v) */ for (i = 0; i < N; i++) { du = di_subinterval(di_interval(start, end), i, N); radius = di_fast_ubound_radius(du); /* g(mid(u),v) + g'(u,v) * [0, radius] */ #if 1 dg = di_integrand_edge(di_fast_mid(du), dv, da1, dba1, dz); dgprime = di_integrand_edge_diff(du, dv, da1, dba1, dz, 0); dg = di_fast_add(dg, di_fast_mul(dgprime, di_interval(0.0, radius))); #else dg = di_integrand_edge(du, dv, da1, dba1, dz); #endif bound = FLINT_MAX(bound, dg.b); } arb_init(abound); arb_set_d(abound, bound); arb_exp(abound, abound, prec); acb_zero(res); arb_add_error(acb_realref(res), abound); arb_add_error(acb_imagref(res), abound); arb_clear(abound); } /* todo: fix acb_pow(_arb) */ static void acb_my_pow_arb(acb_t res, const acb_t a, const arb_t b, slong prec) { if (acb_contains_zero(a) && arb_is_positive(b)) { /* |a^b| <= |a|^b */ arb_t t, u; arb_init(t); arb_init(u); acb_abs(t, a, prec); arb_get_abs_ubound_arf(arb_midref(t), t, prec); mag_zero(arb_radref(t)); if (arf_cmpabs_2exp_si(arb_midref(t), 0) < 0) arb_get_abs_lbound_arf(arb_midref(u), b, prec); else arb_get_abs_ubound_arf(arb_midref(u), b, prec); arb_pow(t, t, u, prec); acb_zero(res); acb_add_error_arb(res, t); arb_clear(t); arb_clear(u); } else { acb_pow_arb(res, a, b, prec); } } static int integrand(acb_ptr out, const acb_t t, void * param, slong order, slong prec) { arb_srcptr a1, ba1, z; acb_t s, u, v; a1 = ((arb_srcptr) param) + 0; ba1 = ((arb_srcptr) param) + 1; z = ((arb_srcptr) param) + 2; acb_init(s); acb_init(u); acb_init(v); acb_add_ui(v, t, 1, prec); if (order == 1) { if (!(arb_is_positive(acb_realref(t)) || arb_is_zero(a1)) || !arb_is_positive(acb_realref(v))) acb_indeterminate(out); else integrand_wide_bound5(out, t, a1, ba1, z, prec); } else { if (acb_contains_zero(t) || acb_contains_zero(v)) { /* exp(-z t) */ acb_mul_arb(s, t, z, prec); acb_neg(s, s); acb_exp(s, s, prec); /* t^(a-1) */ acb_my_pow_arb(u, t, a1, prec); /* (1+t)^(b-a-1) */ acb_pow_arb(v, v, ba1, prec); acb_mul(out, s, u, prec); acb_mul(out, out, v, prec); } else { acb_mul_arb(s, t, z, prec); acb_neg(s, s); /* t^(a-1) */ if (arb_is_zero(a1)) { acb_zero(u); } else { acb_log(u, t, prec); acb_mul_arb(u, u, a1, prec); } /* (1+t)^(b-a-1) */ acb_log(v, v, prec); acb_mul_arb(v, v, ba1, prec); acb_add(out, s, u, prec); acb_add(out, out, v, prec); acb_exp(out, out, prec); } } acb_clear(s); acb_clear(u); acb_clear(v); return 0; } /* estimate integral by magnitude at peak */ static void estimate_magnitude(mag_t res, const arb_t ra, const arb_t rb, const arb_t rz) { double a, b, z, t1, t2, u, m; fmpz_t e; a = arf_get_d(arb_midref(ra), ARF_RND_NEAR); b = arf_get_d(arb_midref(rb), ARF_RND_NEAR); z = arf_get_d(arb_midref(rz), ARF_RND_NEAR); u = 4 - 4*b + b*b + 4*a*z - 2*b*z + z*z; if (u >= 0.0) { t1 = (-2 + b - z + sqrt(u)) / (2 * z); t2 = (-2 + b - z - sqrt(u)) / (2 * z); } else { t1 = 1e-8; t2 = 1e-8; } /* todo: better estimate when peak is at 0 */ t1 = FLINT_MAX(t1, 1e-8); t2 = FLINT_MAX(t2, 1e-8); m = -1e300; if (t1 > 0.0) { t1 = -z * t1 + (a - 1) * log(t1) + (b - a - 1) * log(1 + t1); m = FLINT_MAX(m, t1); } if (t2 > 0.0) { t2 = -z * t2 + (a - 1) * log(t2) + (b - a - 1) * log(1 + t2); m = FLINT_MAX(m, t2); } m /= log(2); if (fabs(m) < 1e300) { fmpz_init(e); fmpz_set_d(e, m); mag_set_d_2exp_fmpz(res, 1.0, e); fmpz_clear(e); } else { mag_zero(res); } } static void bound_tail(mag_t bound, const arb_t a1, const arb_t ba1, const arb_t z, const arb_t N, slong prec) { arb_t s, u, v, C; arb_init(s); arb_init(u); arb_init(v); arb_init(C); /* Assume N >= 1 and t >= 0. -z*(N+t) + (a-1)*log(N+t) + (b-a-1)*log(1+N+t) <= [-z*N + (a-1)*log(N) + (b-a-1)*log(1+N)] + [-z*t + [max(0, a-1) + max(0, b-a-1)]*log(1+t/N)] <= [-z*N + (a-1)*log(N) + (b-a-1)*log(1+N)] + [-z*t + [max(0, a-1) + max(0, b-a-1)]*(t/N)] Let C = max(0, a-1) + max(0, b-a-1). Then the remainder integral is bounded by integrand(N) * N / (N*z - C), assuming that N*z > C. */ arb_max(u, u, a1, prec); arb_max(v, v, ba1, prec); arb_add(C, u, v, prec); /* s = N*z - C */ arb_mul(s, N, z, prec); arb_sub(s, s, C, prec); if (arb_is_positive(s)) { arb_div(C, N, s, prec); /* exp(-z*N) */ arb_mul(s, N, z, prec); arb_neg(s, s); /* N^(a-1) */ arb_log(u, N, prec); arb_mul(u, u, a1, prec); /* (1+N)^(b-a-1) */ arb_add_ui(v, N, 1, prec); arb_log(v, v, prec); arb_mul(v, v, ba1, prec); arb_add(s, s, u, prec); arb_add(s, s, v, prec); arb_exp(s, s, prec); arb_mul(s, s, C, prec); arb_get_mag(bound, s); } else { mag_inf(bound); } arb_clear(s); arb_clear(u); arb_clear(v); arb_clear(C); } int _arb_hypgeom_u_integration(arb_t res, const arb_t a, const arb_t b, const arb_t z, slong prec) { acb_calc_integrate_opt_t opt; arb_struct param[3]; arb_t t, a1, ba1; acb_t zero, N, I; mag_t abs_tol, tail_bound; slong i; fmpz_t n; int ok; arb_init(t); arb_init(a1); arb_init(ba1); arb_sub_ui(a1, a, 1, prec); arb_sub(ba1, b, a, prec); arb_sub_ui(ba1, ba1, 1, prec); ok = arb_is_finite(z) && arb_is_positive(z); ok = ok && arb_is_nonnegative(a1); ok = ok && arb_is_finite(b); if (!ok) { arb_indeterminate(res); } else { mag_init(abs_tol); mag_init(tail_bound); acb_init(zero); acb_init(zero); acb_init(N); acb_init(I); fmpz_init(n); param[0] = *a1; param[1] = *ba1; param[2] = *z; acb_calc_integrate_opt_init(opt); /* opt->verbose = 2; */ /* opt->eval_limit = WORD_MAX; */ estimate_magnitude(abs_tol, a, b, z); mag_mul_2exp_si(abs_tol, abs_tol, -prec); for (i = 1; i < FLINT_BITS; i++) { fmpz_one(n); fmpz_mul_2exp(n, n, i); acb_one(N); arb_mul_2exp_fmpz(acb_realref(N), acb_realref(N), n); bound_tail(tail_bound, a1, ba1, z, acb_realref(N), 64); if (mag_cmp(tail_bound, abs_tol) < 0) break; } acb_calc_integrate(I, integrand, param, zero, N, prec, abs_tol, opt, prec); arb_add_error_mag(acb_realref(I), tail_bound); arb_rgamma(t, a, prec); arb_mul(acb_realref(I), acb_realref(I), t, prec); arb_set(res, acb_realref(I)); mag_clear(abs_tol); mag_clear(tail_bound); acb_clear(zero); acb_clear(N); acb_clear(I); fmpz_clear(n); } arb_clear(t); arb_clear(a1); arb_clear(ba1); return ok; } void arb_hypgeom_u_integration(arb_t res, const arb_t a, const arb_t b, const arb_t z, slong prec) { arb_t res2; arb_init(res2); if (!_arb_hypgeom_u_integration(res2, a, b, z, prec)) { arb_t c, d; arb_init(c); arb_init(d); arb_sub(c, a, b, prec); arb_add_ui(c, c, 1, prec); arb_sub_ui(d, b, 2, prec); arb_neg(d, d); if (_arb_hypgeom_u_integration(res2, c, d, z, prec)) { arb_sub_ui(c, b, 1, prec); arb_neg(c, c); arb_pow(c, z, c, prec); arb_mul(res2, res2, c, prec); } arb_clear(c); arb_clear(d); } arb_swap(res, res2); arb_clear(res2); }