/* Copyright (C) 2013 Fredrik Johansson This file is part of Arb. Arb is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include "arb_poly.h" void arb_gamma_stirling_bound(mag_ptr err, const arb_t x, slong k0, slong knum, slong n); void arb_hypgeom_gamma_stirling_choose_param(int * reflect, slong * r, slong * n, const arb_t x, int use_reflect, int digamma, slong prec); void arb_gamma_stirling_coeff(arb_t b, ulong k, int digamma, slong prec); void _arb_poly_lgamma_series_at_one(arb_ptr u, slong len, slong prec) { slong i; if (len > 0) arb_zero(u); if (len > 1) arb_const_euler(u + 1, prec); if (len > 2) arb_zeta_ui_vec(u + 2, 2, len - 2, prec); for (i = 2; i < len; i++) arb_div_ui(u + i, u + i, i, prec); for (i = 1; i < len; i += 2) arb_neg(u + i, u + i); } static void bsplit(arb_ptr Q, arb_ptr T, const arb_t z, slong a, slong b, slong num, slong prec) { if (b - a == 1) { arb_gamma_stirling_coeff(T, a, 0, prec); if (a == 1) { /* (z + t) */ arb_set(Q, z); if (num > 1) arb_one(Q + 1); if (num > 2) arb_zero(Q + 2); } else { /* (z + t)^2 */ arb_mul(Q, z, z, prec); /* TODO: precompute */ if (num > 1) arb_mul_2exp_si(Q + 1, z, 1); if (num > 2) arb_one(Q + 2); } } else { slong m, n1, n2, q1len, q2len, t1len, t2len, qlen, tlen, alloc; arb_ptr Q1, T1, Q2, T2; m = a + (b - a) / 2; n1 = m - a; n2 = b - m; q1len = FLINT_MIN(2 * n1 + 1, num); t1len = FLINT_MIN(2 * n1 - 1, num); q2len = FLINT_MIN(2 * n2 + 1, num); t2len = FLINT_MIN(2 * n2 - 1, num); qlen = FLINT_MIN(q1len + q2len - 1, num); tlen = FLINT_MIN(t1len + q2len - 1, num); alloc = q1len + q2len + t1len + t2len; Q1 = _arb_vec_init(alloc); Q2 = Q1 + q1len; T1 = Q2 + q2len; T2 = T1 + t1len; bsplit(Q1, T1, z, a, m, num, prec); bsplit(Q2, T2, z, m, b, num, prec); _arb_poly_mullow(Q, Q2, q2len, Q1, q1len, qlen, prec); _arb_poly_mullow(T, Q2, q2len, T1, t1len, tlen, prec); _arb_poly_add(T, T, tlen, T2, t2len, prec); _arb_vec_clear(Q1, alloc); } } void _arb_poly_mullow_cpx(arb_ptr res, arb_srcptr src, slong len, const arb_t c, slong trunc, slong prec) { slong i; if (len < trunc) arb_set(res + len, src + len - 1); for (i = len - 1; i > 0; i--) { arb_mul(res + i, src + i, c, prec); arb_add(res + i, res + i, src + i - 1, prec); } arb_mul(res, src, c, prec); } void _arb_poly_log_cpx_series(arb_ptr res, const arb_t c, slong num, slong prec) { slong i; for (i = 0; i < num; i++) { if (i == 0) arb_log(res + i, c, prec); else if (i == 1) arb_inv(res + i, c, prec); else arb_mul(res + i, res + i - 1, res + 1, prec); } for (i = 2; i < num; i++) { arb_div_ui(res + i, res + i, i, prec); if (i % 2 == 0) arb_neg(res + i, res + i); } } void _arb_poly_gamma_stirling_eval2(arb_ptr res, const arb_t z, slong n, slong num, int diff, slong prec) { slong k, tlen, qlen; arb_ptr T, Q; mag_ptr err; arb_t c; T = _arb_vec_init(num); Q = _arb_vec_init(num); err = _mag_vec_init(num); arb_init(c); arb_gamma_stirling_bound(err, z, 0, num, n); if (n <= 1) { _arb_vec_zero(res, num); } else { qlen = FLINT_MIN(2 * (n - 1) + 1, num); tlen = FLINT_MIN(2 * (n - 1) - 1, num); bsplit(Q, T, z, 1, n, num, prec); _arb_poly_div_series(res, T, tlen, Q, qlen, num, prec); } if (diff) { _arb_vec_add_error_mag_vec(res, err, num); _arb_poly_derivative(res, res, num, prec); if (num > 1) { /* add log(z+x) - 1/(2(z+x)) */ arb_inv(c, z, prec); _arb_vec_set_powers(T, c, num, prec); for (k = 1; k < num - 1; k++) { arb_mul_2exp_si(T, z, 1); arb_div_ui(T, T, k, prec); arb_add_ui(T, T, 1, prec); arb_mul_2exp_si(T, T, -1); if (k % 2 == 0) arb_submul(res + k, T, T + k + 1, prec); else arb_addmul(res + k, T, T + k + 1, prec); } arb_mul_2exp_si(c, c, -1); arb_sub(res, res, c, prec); arb_log(c, z, prec); arb_add(res, res, c, prec); } } else { /* ((z-1/2) + t) * log(z+t) */ _arb_poly_log_cpx_series(T, z, num, prec); arb_one(c); arb_mul_2exp_si(c, c, -1); arb_sub(c, z, c, prec); _arb_poly_mullow_cpx(T, T, num, c, num, prec); /* constant term */ arb_const_log_sqrt2pi(c, prec); arb_add(T, T, c, prec); /* subtract (z+t) */ arb_sub(T, T, z, prec); if (num > 1) arb_sub_ui(T + 1, T + 1, 1, prec); _arb_vec_add(res, res, T, num, prec); _arb_vec_add_error_mag_vec(res, err, num); } _arb_vec_clear(T, num); _arb_vec_clear(Q, num); _mag_vec_clear(err, num); arb_clear(c); } void _arb_poly_gamma_stirling_eval(arb_ptr res, const arb_t z, slong n, slong num, slong prec) { _arb_poly_gamma_stirling_eval2(res, z, n, num, 0, prec); } void _arb_poly_gamma_series(arb_ptr res, arb_srcptr h, slong hlen, slong len, slong prec) { int reflect; slong i, rflen, r, n, wp; arb_ptr t, u, v; arb_struct f[2]; if (hlen == 1) { arb_gamma(res, h, prec); if (arb_is_finite(res)) _arb_vec_zero(res + 1, len - 1); else _arb_vec_indeterminate(res + 1, len - 1); return; } hlen = FLINT_MIN(hlen, len); wp = prec + FLINT_BIT_COUNT(prec); t = _arb_vec_init(len); u = _arb_vec_init(len); v = _arb_vec_init(len); arb_init(f); arb_init(f + 1); /* use zeta values at small integers */ if (arb_is_int(h) && (arf_cmpabs_ui(arb_midref(h), prec / 2) < 0)) { r = arf_get_si(arb_midref(h), ARF_RND_DOWN); if (r <= 0) { _arb_vec_indeterminate(v, len); } else if (r == 1) { _arb_poly_lgamma_series_at_one(u, len, wp); _arb_poly_exp_series(v, u, len, len, wp); } else { _arb_poly_lgamma_series_at_one(u, len, wp); _arb_poly_exp_series(t, u, len, len, wp); arb_one(f); arb_one(f + 1); rflen = FLINT_MIN(len, r); _arb_poly_rising_ui_series(u, f, FLINT_MIN(2, len), r - 1, rflen, wp); _arb_poly_mullow(v, t, len, u, rflen, len, wp); } } else { /* otherwise use Stirling series */ arb_hypgeom_gamma_stirling_choose_param(&reflect, &r, &n, h, 1, 0, wp); /* gamma(h) = (rf(1-h, r) * pi) / (gamma(1-h+r) sin(pi h)), h = h0 + t*/ if (reflect) { /* u = 1/gamma(r+1-h) */ arb_sub_ui(f, h, r + 1, wp); arb_neg(f, f); _arb_poly_gamma_stirling_eval(t, f, n, len, wp); _arb_vec_neg(t, t, len); _arb_poly_exp_series(u, t, len, len, wp); for (i = 1; i < len; i += 2) arb_neg(u + i, u + i); /* v = 1/sin(pi x) */ arb_set(f, h); arb_one(f + 1); _arb_poly_sin_pi_series(t, f, 2, len, wp); _arb_poly_inv_series(v, t, len, len, wp); _arb_poly_mullow(t, u, len, v, len, len, wp); /* rf(1-h,r) * pi */ if (r == 0) { rflen = 1; arb_const_pi(u, wp); } else { arb_sub_ui(f, h, 1, wp); arb_neg(f, f); arb_set_si(f + 1, -1); rflen = FLINT_MIN(len, r + 1); _arb_poly_rising_ui_series(u, f, FLINT_MIN(2, len), r, rflen, wp); arb_const_pi(v, wp); _arb_vec_scalar_mul(u, u, rflen, v, wp); } /* multiply by rising factorial */ _arb_poly_mullow(v, t, len, u, rflen, len, wp); } else { /* gamma(h) = gamma(h+r) / rf(h,r) */ if (r == 0) { arb_add_ui(f, h, r, wp); _arb_poly_gamma_stirling_eval(t, f, n, len, wp); _arb_poly_exp_series(v, t, len, len, wp); } else { /* TODO: div_series may be better (once it has a good basecase), if the rising factorial is short */ arb_set(f, h); arb_one(f + 1); rflen = FLINT_MIN(len, r + 1); _arb_poly_rising_ui_series(u, f, FLINT_MIN(2, len), r, rflen, wp); _arb_poly_inv_series(t, u, rflen, len, wp); arb_add_ui(f, h, r, wp); _arb_poly_gamma_stirling_eval(v, f, n, len, wp); _arb_poly_exp_series(u, v, len, len, wp); _arb_poly_mullow(v, u, len, t, len, len, wp); } } } /* compose with nonconstant part */ arb_zero(t); _arb_vec_set(t + 1, h + 1, hlen - 1); _arb_poly_compose_series(res, v, len, t, hlen, len, prec); arb_clear(f); arb_clear(f + 1); _arb_vec_clear(t, len); _arb_vec_clear(u, len); _arb_vec_clear(v, len); } void arb_poly_gamma_series(arb_poly_t res, const arb_poly_t f, slong n, slong prec) { arb_poly_fit_length(res, n); if (f->length == 0 || n == 0) _arb_vec_indeterminate(res->coeffs, n); else _arb_poly_gamma_series(res->coeffs, f->coeffs, f->length, n, prec); _arb_poly_set_length(res, n); _arb_poly_normalise(res); }