/* Copyright (C) 2017 Fredrik Johansson This file is part of Arb. Arb is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include "arb_poly.h" void _arb_poly_product_roots_complex(arb_ptr poly, arb_srcptr r, slong rn, acb_srcptr c, slong cn, slong prec) { if (rn == 0 && cn == 0) { arb_one(poly); } else if (rn == 1 && cn == 0) { arb_neg(poly, r); arb_one(poly + 1); } else if (rn == 2 && cn == 0) { arb_mul(poly, r + 0, r + 1, prec); arb_add(poly + 1, r + 0, r + 1, prec); arb_neg(poly + 1, poly + 1); arb_one(poly + 2); } else if (rn == 3 && cn == 0) { arb_mul(poly + 1, r, r + 1, prec); arb_mul(poly, poly + 1, r + 2, prec); arb_neg(poly, poly); arb_add(poly + 2, r, r + 1, prec); arb_addmul(poly + 1, poly + 2, r + 2, prec); arb_add(poly + 2, poly + 2, r + 2, prec); arb_neg(poly + 2, poly + 2); arb_one(poly + 3); } else if (rn == 0 && cn == 1) { arb_mul(poly, acb_realref(c), acb_realref(c), prec); arb_addmul(poly, acb_imagref(c), acb_imagref(c), prec); arb_mul_2exp_si(poly + 1, acb_realref(c), 1); arb_neg(poly + 1, poly + 1); arb_one(poly + 2); } else if (rn == 1 && cn == 1) { arb_mul(poly + 1, acb_realref(c), acb_realref(c), prec); arb_addmul(poly + 1, acb_imagref(c), acb_imagref(c), prec); arb_mul(poly, poly + 1, r, prec); arb_neg(poly, poly); arb_mul_2exp_si(poly + 2, acb_realref(c), 1); arb_addmul(poly + 1, poly + 2, r, prec); arb_add(poly + 2, poly + 2, r, prec); arb_neg(poly + 2, poly + 2); arb_one(poly + 3); } else { slong rm, cm, rm2, cm2; arb_ptr tmp, tmp2; rm = (rn + 1) / 2; cm = cn / 2; rm2 = rn - rm; cm2 = cn - cm; tmp = _arb_vec_init(rn + 2 * cn + 2); tmp2 = tmp + rm + (2 * cm) + 1; _arb_poly_product_roots_complex(tmp, r, rm, c, cm, prec); _arb_poly_product_roots_complex(tmp2, r + rm, rm2, c + cm, cm2, prec); _arb_poly_mul_monic(poly, tmp, rm + 2 * cm + 1, tmp2, rm2 + 2 * cm2 + 1, prec); _arb_vec_clear(tmp, rn + 2 * cn + 2); } } void arb_poly_product_roots_complex(arb_poly_t poly, arb_srcptr r, slong rn, acb_srcptr c, slong cn, slong prec) { arb_poly_fit_length(poly, rn + 2 * cn + 1); _arb_poly_product_roots_complex(poly->coeffs, r, rn, c, cn, prec); _arb_poly_set_length(poly, rn + 2 * cn + 1); }