/* Copyright (C) 2013 Fredrik Johansson This file is part of Arb. Arb is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include "arb_poly.h" #include "acb_poly.h" /* series of c^(d+x) */ static __inline__ void _arb_poly_pow_cpx(arb_ptr res, const arb_t c, const arb_t d, slong trunc, slong prec) { slong i; arb_t logc; arb_init(logc); arb_log(logc, c, prec); arb_mul(res + 0, logc, d, prec); arb_exp(res + 0, res + 0, prec); for (i = 1; i < trunc; i++) { arb_mul(res + i, res + i - 1, logc, prec); arb_div_ui(res + i, res + i, i, prec); } arb_clear(logc); } void _arb_poly_zeta_series(arb_ptr res, arb_srcptr h, slong hlen, const arb_t a, int deflate, slong len, slong prec) { slong i; acb_t cs, ca; acb_ptr z; arb_ptr t, u; if (arb_contains_nonpositive(a)) { _arb_vec_indeterminate(res, len); return; } hlen = FLINT_MIN(hlen, len); z = _acb_vec_init(len); t = _arb_vec_init(len); u = _arb_vec_init(len); acb_init(cs); acb_init(ca); /* use reflection formula */ if (arf_sgn(arb_midref(h)) < 0 && arb_is_one(a)) { /* zeta(s) = (2*pi)**s * sin(pi*s/2) / pi * gamma(1-s) * zeta(1-s) */ arb_t pi; arb_ptr f, s1, s2, s3, s4; arb_init(pi); f = _arb_vec_init(2); s1 = _arb_vec_init(len); s2 = _arb_vec_init(len); s3 = _arb_vec_init(len); s4 = _arb_vec_init(len); arb_const_pi(pi, prec); /* s1 = (2*pi)**s */ arb_mul_2exp_si(pi, pi, 1); _arb_poly_pow_cpx(s1, pi, h, len, prec); arb_mul_2exp_si(pi, pi, -1); /* s2 = sin(pi*s/2) / pi */ arb_set(f, h); arb_one(f + 1); arb_mul_2exp_si(f, f, -1); arb_mul_2exp_si(f + 1, f + 1, -1); _arb_poly_sin_pi_series(s2, f, 2, len, prec); _arb_vec_scalar_div(s2, s2, len, pi, prec); /* s3 = gamma(1-s) */ arb_sub_ui(f, h, 1, prec); arb_neg(f, f); arb_set_si(f + 1, -1); _arb_poly_gamma_series(s3, f, 2, len, prec); /* s4 = zeta(1-s) */ arb_sub_ui(f, h, 1, prec); arb_neg(f, f); acb_set_arb(cs, f); acb_one(ca); _acb_poly_zeta_cpx_series(z, cs, ca, 0, len, prec); for (i = 0; i < len; i++) arb_set(s4 + i, acb_realref(z + i)); for (i = 1; i < len; i += 2) arb_neg(s4 + i, s4 + i); _arb_poly_mullow(u, s1, len, s2, len, len, prec); _arb_poly_mullow(s1, s3, len, s4, len, len, prec); _arb_poly_mullow(t, u, len, s1, len, len, prec); /* add 1/(1-(s+t)) = 1/(1-s) + t/(1-s)^2 + ... */ if (deflate) { arb_sub_ui(u, h, 1, prec); arb_neg(u, u); arb_inv(u, u, prec); for (i = 1; i < len; i++) arb_mul(u + i, u + i - 1, u, prec); _arb_vec_add(t, t, u, len, prec); } arb_clear(pi); _arb_vec_clear(f, 2); _arb_vec_clear(s1, len); _arb_vec_clear(s2, len); _arb_vec_clear(s3, len); _arb_vec_clear(s4, len); } else { acb_set_arb(cs, h); acb_set_arb(ca, a); _acb_poly_zeta_cpx_series(z, cs, ca, deflate, len, prec); for (i = 0; i < len; i++) arb_set(t + i, acb_realref(z + i)); } /* compose with nonconstant part */ arb_zero(u); _arb_vec_set(u + 1, h + 1, hlen - 1); _arb_poly_compose_series(res, t, len, u, hlen, len, prec); _acb_vec_clear(z, len); _arb_vec_clear(t, len); _arb_vec_clear(u, len); acb_clear(cs); acb_clear(ca); } void arb_poly_zeta_series(arb_poly_t res, const arb_poly_t f, const arb_t a, int deflate, slong n, slong prec) { if (n == 0) { arb_poly_zero(res); return; } arb_poly_fit_length(res, n); if (f->length == 0) { arb_t t; arb_init(t); _arb_poly_zeta_series(res->coeffs, t, 1, a, deflate, n, prec); arb_clear(t); } else { _arb_poly_zeta_series(res->coeffs, f->coeffs, f->length, a, deflate, n, prec); } _arb_poly_set_length(res, n); _arb_poly_normalise(res); }