/* Copyright (C) 2014 Fredrik Johansson This file is part of Arb. Arb is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include "flint/mpn_extras.h" #include "arf.h" #if !defined(__MPIR_VERSION) #define USE_GMP_DIV_Q 1 void __gmpn_div_q(mp_ptr, mp_srcptr, mp_size_t, mp_srcptr, mp_size_t, mp_ptr); #else #define USE_GMP_DIV_Q 0 #endif void arf_div_special(arf_t z, const arf_t x, const arf_t y) { if ((arf_is_zero(x) && !arf_is_zero(y) && !arf_is_nan(y)) || (arf_is_inf(y) && !arf_is_special(x))) { arf_zero(z); } else if (arf_is_zero(y) || (arf_is_special(x) && arf_is_special(y)) || arf_is_nan(x) || arf_is_nan(y)) { arf_nan(z); } else if (arf_sgn(x) == arf_sgn(y)) arf_pos_inf(z); else arf_neg_inf(z); } int arf_div(arf_ptr z, arf_srcptr x, arf_srcptr y, slong prec, arf_rnd_t rnd) { mp_size_t xn, yn, zn, sn, tn, alloc; mp_srcptr xptr, yptr; mp_ptr tmp; mp_ptr tptr, zptr; int inexact; slong fix, fix2; ARF_MUL_TMP_DECL if (arf_is_special(x) || arf_is_special(y)) { arf_div_special(z, x, y); return 0; } ARF_GET_MPN_READONLY(xptr, xn, x); ARF_GET_MPN_READONLY(yptr, yn, y); /* Division by a power of two */ if (yn == 1 && yptr[0] == LIMB_TOP) { fmpz_t t; fmpz_init_set(t, ARF_EXPREF(y)); if (ARF_SGNBIT(y)) inexact = arf_neg_round(z, x, prec, rnd); else inexact = arf_set_round(z, x, prec, rnd); _fmpz_sub2_fast(ARF_EXPREF(z), ARF_EXPREF(z), t, 1); fmpz_clear(t); return inexact; } sn = FLINT_MAX(prec - xn * FLINT_BITS + yn * FLINT_BITS, 0) + 32; sn = (sn + FLINT_BITS - 1) / FLINT_BITS; /* Need space for numerator (tn), quotient (zn), and one extra limb at the top of tptr for the multiplication to check the remainder. */ tn = xn + sn; zn = tn - yn + 1; alloc = zn + (tn + 1); /* need tn + 1 extra temporary limbs, which we store at the end of tptr */ #if USE_GMP_DIV_Q alloc += tn + 1; #endif ARF_MUL_TMP_ALLOC(tmp, alloc) zptr = tmp; tptr = tmp + zn; flint_mpn_zero(tptr, sn); flint_mpn_copyi(tptr + sn, xptr, xn); /* uses tn + 1 extra temporary limbs, tn limbs after tptr */ #if USE_GMP_DIV_Q __gmpn_div_q(zptr, tptr, tn, yptr, yn, tptr + tn); #else mpn_tdiv_q(zptr, tptr, tn, yptr, yn); #endif if (zptr[zn - 1] == 0) { zn--; fix2 = 0; } else { fix2 = FLINT_BITS; } /* The remainder can only be zero if the last several bits of the extended quotient are zero. */ if ((zptr[0] & ((LIMB_ONE << 24) - 1)) == 0) { /* The quotient is exact iff multiplying by y gives back the input. Note: the multiplication may write sn + xn + 1 limbs, but tptr[sn + xn] is guaranteed to be zero in that case since the approximate quotient cannot be larger than the true quotient. */ if (zn >= yn) mpn_mul(tptr, zptr, zn, yptr, yn); else mpn_mul(tptr, yptr, yn, zptr, zn); /* The quotient is not exact. Perturbing the approximate quotient and rounding gives the correct the result. */ if (!flint_mpn_zero_p(tptr, sn) || mpn_cmp(tptr + sn, xptr, xn) != 0) { zptr[0]++; } } inexact = _arf_set_round_mpn(z, &fix, zptr, zn, ARF_SGNBIT(x) ^ ARF_SGNBIT(y), prec, rnd); _fmpz_sub2_fast(ARF_EXPREF(z), ARF_EXPREF(x), ARF_EXPREF(y), fix + fix2); ARF_MUL_TMP_FREE(tmp, alloc) return inexact; }