/* Copyright (C) 2014 Fredrik Johansson This file is part of Arb. Arb is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include "arf.h" int _arf_set_round_mpn(arf_t y, slong * exp_shift, mp_srcptr x, mp_size_t xn, int sgnbit, slong prec, arf_rnd_t rnd) { unsigned int leading; flint_bitcnt_t exp, bc, val, val_bits; mp_size_t yn, val_limbs; mp_ptr yptr; mp_limb_t t; int increment, inexact; /* Compute the total bit length of x. */ count_leading_zeros(leading, x[xn - 1]); exp = xn * FLINT_BITS - leading; /* Set exponent. */ *exp_shift = -(slong) leading; /* Find first nonzero bit. */ val_limbs = 0; while (x[val_limbs] == 0) val_limbs++; count_trailing_zeros(val_bits, x[val_limbs]); val = val_limbs * FLINT_BITS + val_bits; if (exp - val <= prec) { inexact = 0; increment = 0; } else { inexact = 1; /* Limb and bit of the truncation point. */ val_limbs = (exp - prec) / FLINT_BITS; val_bits = (exp - prec) % FLINT_BITS; if (rnd == ARF_RND_DOWN) { increment = 0; } else if (rnd == ARF_RND_NEAR) { /* If exactly one excess bit, there is a tie; the rounding direction is determined by the bit to the left of the truncation point. */ if (exp - val - 1 == prec) { increment = (x[val_limbs] >> val_bits) & 1; } else { /* The bit to the right of the truncation point determines the rounding direction. */ mp_size_t exc_limbs = (exp - prec - 1) / FLINT_BITS; flint_bitcnt_t exc_bits = (exp - prec - 1) % FLINT_BITS; increment = (x[exc_limbs] >> exc_bits) & 1; } } else { if (rnd == ARF_RND_UP) increment = 1; else if (rnd == ARF_RND_FLOOR) increment = sgnbit; else increment = !sgnbit; } if (!increment) { /* Find first nonzero bit from the truncation point. */ t = x[val_limbs] & (LIMB_ONES << val_bits); while (t == 0) { val_limbs++; t = x[val_limbs]; } count_trailing_zeros(val_bits, t); val = val_limbs * FLINT_BITS + val_bits; } else { /* Find first zero bit from the truncation point */ t = (~x[val_limbs]) & (LIMB_ONES << val_bits); while (t == 0) { val_limbs++; if (val_limbs < xn) t = ~x[val_limbs]; else /* The array is all ones up to the highest limb. */ { val_bits = 0; goto END_SCAN1; } } count_trailing_zeros(val_bits, t); END_SCAN1: val = val_limbs * FLINT_BITS + val_bits; /* Overflow to next power of two (unlikely). */ if (val == exp) { exp_shift[0]++; ARF_DEMOTE(y); ARF_NOPTR_D(y)[0] = LIMB_TOP; ARF_XSIZE(y) = ARF_MAKE_XSIZE(1, sgnbit); return 1; } } } /* Now copy the result to destination. */ x += val_limbs; xn -= val_limbs; bc = exp - val; yn = (bc + FLINT_BITS - 1) / FLINT_BITS; ARF_GET_MPN_WRITE(yptr, yn, y); ARF_XSIZE(y) |= sgnbit; if (leading == 0) { flint_mpn_copyi(yptr, x, xn); } else if (xn == yn) { mpn_lshift(yptr, x, yn, leading); } else { mpn_lshift(yptr, x + 1, yn, leading); yptr[0] |= (x[0] >> (FLINT_BITS - leading)); } if (increment) { /* Mask off bits from the last limb. */ yptr[0] &= LIMB_ONES << (yn * FLINT_BITS - bc); /* Increment (no carry propagation). */ yptr[0] += LIMB_ONE << (yn * FLINT_BITS - bc); } else if (inexact && prec < yn * FLINT_BITS) { /* Mask off bits from the last limb. */ yptr[0] &= LIMB_ONES << (yn * FLINT_BITS - prec); } return inexact; }