/* Copyright (C) 2012 Fredrik Johansson This file is part of Arb. Arb is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #ifndef BERNOULLI_H #define BERNOULLI_H #include #include "flint/flint.h" #include "flint/fmpz.h" #include "flint/fmpz_vec.h" #include "flint/fmpq.h" #include "flint/arith.h" #include "arb.h" #ifdef __cplusplus extern "C" { #endif extern slong TLS_PREFIX bernoulli_cache_num; extern TLS_PREFIX fmpq * bernoulli_cache; void bernoulli_cache_compute(slong n); /* Crude bound for the bits in d(n) = denom(B_n). By von Staudt-Clausen, d(n) = prod_{p-1 | n} p <= prod_{k | n} 2k <= n^{sigma_0(n)}. We get a more accurate estimate taking the square root of this. Further, at least for sufficiently large n, sigma_0(n) < exp(1.066 log(n) / log(log(n))). */ static __inline__ slong bernoulli_denom_size(slong n) { return 0.5 * 1.4427 * log(n) * pow(n, 1.066 / log(log(n))); } static __inline__ slong bernoulli_zeta_terms(ulong s, slong prec) { slong N; N = pow(2.0, (prec + 1.0) / (s - 1.0)); N += ((N % 2) == 0); return N; } static __inline__ slong bernoulli_power_prec(slong i, ulong s1, slong wp) { slong p = wp - s1 * log(i) * 1.44269504088896341; return FLINT_MAX(p, 10); } /* we should technically add O(log(n)) guard bits, but this is unnecessary in practice since the denominator estimate is quite a bit larger than the true denominators */ static __inline__ slong bernoulli_global_prec(ulong nmax) { return arith_bernoulli_number_size(nmax) + bernoulli_denom_size(nmax); } /* avoid potential numerical problems for very small n */ #define BERNOULLI_REV_MIN 32 typedef struct { slong alloc; slong prec; slong max_power; fmpz * powers; fmpz_t pow_error; arb_t prefactor; arb_t two_pi_squared; ulong n; } bernoulli_rev_struct; typedef bernoulli_rev_struct bernoulli_rev_t[1]; void bernoulli_rev_init(bernoulli_rev_t iter, ulong nmax); void bernoulli_rev_next(fmpz_t numer, fmpz_t denom, bernoulli_rev_t iter); void bernoulli_rev_clear(bernoulli_rev_t iter); #define BERNOULLI_ENSURE_CACHED(n) \ do { \ slong __n = (n); \ if (__n >= bernoulli_cache_num) \ bernoulli_cache_compute(__n + 1); \ } while (0); \ slong bernoulli_bound_2exp_si(ulong n); ulong bernoulli_mod_p_harvey(ulong k, ulong p); void _bernoulli_fmpq_ui_multi_mod(fmpz_t num, fmpz_t den, ulong n, double alpha); void _bernoulli_fmpq_ui_zeta(fmpz_t num, fmpz_t den, ulong n); void _bernoulli_fmpq_ui(fmpz_t num, fmpz_t den, ulong n); void bernoulli_fmpq_ui(fmpq_t b, ulong n); #ifdef __cplusplus } #endif #endif