/*
Copyright (C) 2016 Pascal Molin
This file is part of Arb.
Arb is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version. See .
*/
#include "dlog.h"
#include
static ulong
dlog_single(ulong b, ulong a, const nmod_t mod, ulong n)
{
if (n < 50)
{
int k;
ulong ak = 1;
for (k=0; k < n; k++)
{
if (ak == b)
return k;
ak = nmod_mul(ak, a, mod);
}
flint_printf("FAIL[dlog single]: log(%wu,%wu) mod %wu not found (size %wu)\n",
b, a, mod.n, n);
flint_abort();
return 0; /* dummy return because flint_abort() is not declared noreturn */
}
else
{
dlog_rho_t t;
dlog_rho_init(t, a, mod.n, n);
return dlog_rho(t, b);
}
}
/* solve log knowing equation e = f * log(b) [n] */
static ulong
dlog_quotient(const dlog_rho_t t, ulong e, ulong f, ulong g, ulong b)
{
ulong r, b_ar, an;
nmod_t n = t->n;
if (g == n.n)
{
flint_printf("FAIL[dlog quotient]: trivial relation e = %wu, f = %wu mod %wu\n",
e, f, n.n);
flint_abort();
}
nmod_init(&n, n.n / g);
e = e / g;
f = f / g;
r = nmod_div(e, f, n);
an = nmod_pow_ui(t->a, n.n, t->mod);
b_ar = nmod_div(b, nmod_pow_ui(t->a, r, t->mod), t->mod);
return r + n.n * dlog_single(b_ar, an, t->mod, g);
}
#define RWALK 20
ulong
dlog_rho(const dlog_rho_t t, ulong b)
{
int j, k, l;
ulong m[RWALK], n[RWALK], ab[RWALK];
ulong x[2], e[2], f[2], g;
flint_rand_t state;
flint_randinit(state);
do {
for (k = 0; k < RWALK; k++)
{
m[k] = 1 + n_randint(state, t->n.n - 1);
n[k] = 1 + n_randint(state, t->n.n - 1);
ab[k] = nmod_mul(nmod_pow_ui(t->a, m[k], t->mod), nmod_pow_ui(b, n[k], t->mod), t->mod);
}
/* x[l] = a^e[l] * b^f[l] */
x[0] = x[1] = 1;
e[0] = e[1] = 0;
f[0] = f[1] = 0;
do {
for(j = 0; j < 3; j++)
{
l = (j > 0);
k = floor( (double) RWALK * x[l] / t->mod.n );
x[l] = nmod_mul(x[l], ab[k], t->mod);
e[l] = nmod_add(e[l], m[k], t->n);
f[l] = nmod_add(f[l], n[k], t->n);
}
} while (x[0] != x[1]);
} while (e[0] == e[1] && f[0] == f[1]);
flint_randclear(state);
/* e = f * log(b) */
e[0] = nmod_sub(e[0], e[1], t->n);
f[0] = nmod_sub(f[1], f[0], t->n);
if (!t->nisprime && (g = n_gcd(f[0], t->n.n)) > 1)
return dlog_quotient(t, e[0], f[0], g, b);
else
return nmod_div(e[0], f[0], t->n);
}