/* Copyright (C) 2016 Pascal Molin This file is part of Arb. Arb is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include "dlog.h" #include #define vbs 1 #define FACTOR_RATIO 4 static int factor_until(ulong * n, ulong nlim, const ulong * p, ulong pmax, ulong * fp, int * fe) { int i, j; for (i = 0, j = 0; *n >= nlim && p[j] < pmax; j++) { int e = n_remove(n, p[j]); if (e) { fp[i] = p[j]; fe[i] = e; i++; } } return i; } ulong dlog_vec_pindex_factorgcd(ulong * v, ulong nv, ulong p, nmod_t mod, ulong a, ulong na, ulong loga, ulong logm1, nmod_t order, int maxtry) { int nm = 0, ng = 0; ulong pm, logm, pmax; ulong u[2], r[2], t; ulong up[15], rp[15]; int ue[15], re[15]; const ulong * prime; prime = n_primes_arr_readonly(p); pmax = p / FACTOR_RATIO; pm = p; logm = 0; while (nm++ < maxtry) { int i, j, iu, ir; ulong logr; pm = nmod_mul(pm, a, mod); logm = nmod_add(logm, loga, order); /* if (2 * pm > mod.n) { pm = nmod_neg(pm, mod); logm = nmod_add(logm, logm1, order); } */ /* half gcd u * pm + v * mod = r, ignore v */ u[0] = 0; r[0] = mod.n; u[1] = 1; r[1] = pm; i = 1; j = 0; /* flip flap */ while (r[i] > u[i]) { ng++; if (r[i] < nv && v[r[i]] != DLOG_NOT_FOUND && u[i] < nv && v[u[i]] != DLOG_NOT_FOUND) { /* early smooth detection: occurs for primes < 30 bits */ ulong x; /* chi(-1)^j*chi(u)*chi(p)*chi(m)=chi(r) */ x = nmod_sub(v[r[i]], nmod_add(v[u[i]], logm, order), order); if (j) x = nmod_add(x, logm1, order); return x; } j = i; i = 1 - i; /* switch */ t = r[i] / r[j]; r[i] = r[i] % r[j]; u[i] = u[i] + t * u[j]; /* times (-1)^j */ }; /* try to factor both r[i] and u[i] */ iu = factor_until(&u[i], nv, prime, pmax, up, ue); if (u[i] >= nv || v[u[i]] == DLOG_NOT_FOUND) continue; ir = factor_until(&r[i], nv, prime, pmax, rp, re); if (r[i] >= nv || v[r[i]] == DLOG_NOT_FOUND) continue; /* log(u)+log(p)+log(m)=log(r) */ logm = nmod_add(logm, v[u[i]], order); logr = (j) ? logm1 : 0; logr = nmod_add(logr, v[r[i]], order); for (i=0; i < ir; i++) logr = nmod_add(logr, nmod_mul(re[i], v[rp[i]], order), order); for (i=0; i < iu; i++) logm = nmod_add(logm, nmod_mul(ue[i], v[up[i]], order), order); return nmod_sub(logr, logm, order); } return DLOG_NOT_FOUND; }