/*
Copyright (C) 2016 Pascal Molin
This file is part of Arb.
Arb is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version. See .
*/
#include "dlog.h"
#include
#define vbs 1
#define FACTOR_RATIO 4
static int
factor_until(ulong * n, ulong nlim, const ulong * p, ulong pmax, ulong * fp, int * fe)
{
int i, j;
for (i = 0, j = 0; *n >= nlim && p[j] < pmax; j++)
{
int e = n_remove(n, p[j]);
if (e)
{
fp[i] = p[j];
fe[i] = e;
i++;
}
}
return i;
}
ulong
dlog_vec_pindex_factorgcd(ulong * v, ulong nv, ulong p, nmod_t mod, ulong a, ulong na, ulong loga, ulong logm1, nmod_t order, int maxtry)
{
int nm = 0, ng = 0;
ulong pm, logm, pmax;
ulong u[2], r[2], t;
ulong up[15], rp[15];
int ue[15], re[15];
const ulong * prime;
prime = n_primes_arr_readonly(p);
pmax = p / FACTOR_RATIO;
pm = p;
logm = 0;
while (nm++ < maxtry)
{
int i, j, iu, ir;
ulong logr;
pm = nmod_mul(pm, a, mod);
logm = nmod_add(logm, loga, order);
/*
if (2 * pm > mod.n)
{
pm = nmod_neg(pm, mod);
logm = nmod_add(logm, logm1, order);
}
*/
/* half gcd u * pm + v * mod = r, ignore v */
u[0] = 0; r[0] = mod.n;
u[1] = 1; r[1] = pm;
i = 1; j = 0; /* flip flap */
while (r[i] > u[i])
{
ng++;
if (r[i] < nv && v[r[i]] != DLOG_NOT_FOUND && u[i] < nv && v[u[i]] != DLOG_NOT_FOUND)
{
/* early smooth detection: occurs for primes < 30 bits */
ulong x;
/* chi(-1)^j*chi(u)*chi(p)*chi(m)=chi(r) */
x = nmod_sub(v[r[i]], nmod_add(v[u[i]], logm, order), order);
if (j)
x = nmod_add(x, logm1, order);
return x;
}
j = i; i = 1 - i; /* switch */
t = r[i] / r[j];
r[i] = r[i] % r[j];
u[i] = u[i] + t * u[j]; /* times (-1)^j */
};
/* try to factor both r[i] and u[i] */
iu = factor_until(&u[i], nv, prime, pmax, up, ue);
if (u[i] >= nv || v[u[i]] == DLOG_NOT_FOUND)
continue;
ir = factor_until(&r[i], nv, prime, pmax, rp, re);
if (r[i] >= nv || v[r[i]] == DLOG_NOT_FOUND)
continue;
/* log(u)+log(p)+log(m)=log(r) */
logm = nmod_add(logm, v[u[i]], order);
logr = (j) ? logm1 : 0;
logr = nmod_add(logr, v[r[i]], order);
for (i=0; i < ir; i++)
logr = nmod_add(logr, nmod_mul(re[i], v[rp[i]], order), order);
for (i=0; i < iu; i++)
logm = nmod_add(logm, nmod_mul(ue[i], v[up[i]], order), order);
return nmod_sub(logr, logm, order);
}
return DLOG_NOT_FOUND;
}