.. _acb-dirichlet: **acb_dirichlet.h** -- Dirichlet L-functions, Riemann zeta and related functions =================================================================================== This module allows working with values of Dirichlet characters, Dirichlet L-functions, and related functions. A Dirichlet L-function is the analytic continuation of an L-series .. math :: L(s,\chi) = \sum_{k=1}^\infty \frac{\chi(k)}{k^s} where `\chi(k)` is a Dirichlet character. The trivial character `\chi(k) = 1` gives the Riemann zeta function. Working with Dirichlet characters is documented in :ref:`dirichlet`. The code in other modules for computing the Riemann zeta function, Hurwitz zeta function and polylogarithm will possibly be migrated to this module in the future. Roots of unity ------------------------------------------------------------------------------- .. type:: acb_dirichlet_roots_struct .. type:: acb_dirichlet_roots_t .. function:: void acb_dirichlet_roots_init(acb_dirichlet_roots_t roots, ulong n, slong num, slong prec) Initializes *roots* with precomputed data for fast evaluation of roots of unity `e^{2\pi i k/n}` of a fixed order *n*. The precomputation is optimized for *num* evaluations. For very small *num*, only the single root `e^{2\pi i/n}` will be precomputed, which can then be raised to a power. For small *prec* and large *n*, this method might even skip precomputing this single root if it estimates that evaluating roots of unity from scratch will be faster than powering. If *num* is large enough, the whole set of roots in the first quadrant will be precomputed at once. However, this is automatically avoided for large *n* if too much memory would be used. For intermediate *num*, baby-step giant-step tables are computed. .. function:: void acb_dirichlet_roots_clear(acb_dirichlet_roots_t roots) Clears the structure. .. function:: void acb_dirichlet_root(acb_t res, const acb_dirichlet_roots_t roots, ulong k, slong prec) Computes `e^{2\pi i k/n}`. Truncated L-series and power sums ------------------------------------------------------------------------------- .. function:: void acb_dirichlet_powsum_term(acb_ptr res, arb_t log_prev, ulong * prev, const acb_t s, ulong k, int integer, int critical_line, slong len, slong prec) Sets *res* to `k^{-(s+x)}` as a power series in *x* truncated to length *len*. The flags *integer* and *critical_line* respectively specify optimizing for *s* being an integer or having real part 1/2. On input *log_prev* should contain the natural logarithm of the integer at *prev*. If *prev* is close to *k*, this can be used to speed up computations. If `\log(k)` is computed internally by this function, then *log_prev* is overwritten by this value, and the integer at *prev* is overwritten by *k*, allowing *log_prev* to be recycled for the next term when evaluating a power sum. .. function:: void acb_dirichlet_powsum_sieved(acb_ptr res, const acb_t s, ulong n, slong len, slong prec) Sets *res* to `\sum_{k=1}^n k^{-(s+x)}` as a power series in *x* truncated to length *len*. This function stores a table of powers that have already been calculated, computing `(ij)^r` as `i^r j^r` whenever `k = ij` is composite. As a further optimization, it groups all even `k` and evaluates the sum as a polynomial in `2^{-(s+x)}`. This scheme requires about `n / \log n` powers, `n / 2` multiplications, and temporary storage of `n / 6` power series. Due to the extra power series multiplications, it is only faster than the naive algorithm when *len* is small. .. function:: void acb_dirichlet_powsum_smooth(acb_ptr res, const acb_t s, ulong n, slong len, slong prec) Sets *res* to `\sum_{k=1}^n k^{-(s+x)}` as a power series in *x* truncated to length *len*. This function performs partial sieving by adding multiples of 5-smooth *k* into separate buckets. Asymptotically, this requires computing 4/15 of the powers, which is slower than *sieved*, but only requires logarithmic extra space. It is also faster for large *len*, since most power series multiplications are traded for additions. A slightly bigger gain for larger *n* could be achieved by using more small prime factors, at the expense of space. Riemann zeta function ------------------------------------------------------------------------------- .. function:: void acb_dirichlet_zeta(acb_t res, const acb_t s, slong prec) Computes `\zeta(s)` using an automatic choice of algorithm. .. function:: void acb_dirichlet_zeta_jet(acb_t res, const acb_t s, int deflate, slong len, slong prec) Computes the first *len* terms of the Taylor series of the Riemann zeta function at *s*. If *deflate* is nonzero, computes the deflated function `\zeta(s) - 1/(s-1)` instead. .. function:: void acb_dirichlet_zeta_bound(mag_t res, const acb_t s) Computes an upper bound for `|\zeta(s)|` quickly. On the critical strip (and slightly outside of it), formula (43.3) in [Rad1973]_ is used. To the right, evaluating at the real part of *s* gives a trivial bound. To the left, the functional equation is used. .. function:: void acb_dirichlet_zeta_deriv_bound(mag_t der1, mag_t der2, const acb_t s) Sets *der1* to a bound for `|\zeta'(s)|` and *der2* to a bound for `|\zeta''(s)|`. These bounds are mainly intended for use in the critical strip and will not be tight. .. function:: void acb_dirichlet_eta(acb_t res, const acb_t s, slong prec) Sets *res* to the Dirichlet eta function `\eta(s) = \sum_{k=1}^{\infty} (-1)^{k+1} / k^s = (1-2^{1-s}) \zeta(s)`, also known as the alternating zeta function. Note that the alternating character `\{1,-1\}` is not itself a Dirichlet character. .. function:: void acb_dirichlet_xi(acb_t res, const acb_t s, slong prec) Sets *res* to the Riemann xi function `\xi(s) = \frac{1}{2} s (s-1) \pi^{-s/2} \Gamma(\frac{1}{2} s) \zeta(s)`. The functional equation for xi is `\xi(1-s) = \xi(s)`. Riemann-Siegel formula ------------------------------------------------------------------------------- The Riemann-Siegel (RS) formula is implemented closely following J. Arias de Reyna [Ari2011]_. For `s = \sigma + it` with `t > 0`, the expansion takes the form .. math :: \zeta(s) = \mathcal{R}(s) + X(s) \overline{\mathcal{R}}(1-s), \quad X(s) = \pi^{s-1/2} \frac{\Gamma((1-s)/2)}{\Gamma(s/2)} where .. math :: \mathcal{R}(s) = \sum_{k=1}^N \frac{1}{k^s} + (-1)^{N-1} U a^{-\sigma} \left[ \sum_{k=0}^K \frac{C_k(p)}{a^k} + RS_K \right] .. math :: U = \exp\left(-i\left[ \frac{t}{2} \log\left(\frac{t}{2\pi}\right)-\frac{t}{2}-\frac{\pi}{8} \right]\right), \quad a = \sqrt{\frac{t}{2\pi}}, \quad N = \lfloor a \rfloor, \quad p = 1-2(a-N). The coefficients `C_k(p)` in the asymptotic part of the expansion are expressed in terms of certain auxiliary coefficients `d_j^{(k)}` and `F^{(j)}(p)`. Because of artificial discontinuities, *s* should be exact inside the evaluation. .. function:: void acb_dirichlet_zeta_rs_f_coeffs(acb_ptr f, const arb_t p, slong n, slong prec) Computes the coefficients `F^{(j)}(p)` for `0 \le j < n`. Uses power series division. This method breaks down when `p = \pm 1/2` (which is not problem if *s* is an exact floating-point number). .. function:: void acb_dirichlet_zeta_rs_d_coeffs(arb_ptr d, const arb_t sigma, slong k, slong prec) Computes the coefficients `d_j^{(k)}` for `0 \le j \le \lfloor 3k/2 \rfloor + 1`. On input, the array *d* must contain the coefficients for `d_j^{(k-1)}` unless `k = 0`, and these coefficients will be updated in-place. .. function:: void acb_dirichlet_zeta_rs_bound(mag_t err, const acb_t s, slong K) Bounds the error term `RS_K` following Theorem 4.2 in Arias de Reyna. .. function:: void acb_dirichlet_zeta_rs_r(acb_t res, const acb_t s, slong K, slong prec) Computes `\mathcal{R}(s)` in the upper half plane. Uses precisely *K* asymptotic terms in the RS formula if this input parameter is positive; otherwise chooses the number of terms automatically based on *s* and the precision. .. function:: void acb_dirichlet_zeta_rs(acb_t res, const acb_t s, slong K, slong prec) Computes `\zeta(s)` using the Riemann-Siegel formula. Uses precisely *K* asymptotic terms in the RS formula if this input parameter is positive; otherwise chooses the number of terms automatically based on *s* and the precision. .. function:: void acb_dirichlet_zeta_jet_rs(acb_t res, const acb_t s, slong len, slong prec) Computes the first *len* terms of the Taylor series of the Riemann zeta function at *s* using the Riemann Siegel formula. This function currently only supports *len* = 1 or *len* = 2. A finite difference is used to compute the first derivative. Hurwitz zeta function ------------------------------------------------------------------------------- .. function:: void acb_dirichlet_hurwitz(acb_t res, const acb_t s, const acb_t a, slong prec) Computes the Hurwitz zeta function `\zeta(s, a)`. This function automatically delegates to the code for the Riemann zeta function when `a = 1`. Some other special cases may also be handled by direct formulas. In general, Euler-Maclaurin summation is used. Hurwitz zeta function precomputation ------------------------------------------------------------------------------- .. type:: acb_dirichlet_hurwitz_precomp_struct .. type:: acb_dirichlet_hurwitz_precomp_t .. function:: void acb_dirichlet_hurwitz_precomp_init(acb_dirichlet_hurwitz_precomp_t pre, const acb_t s, int deflate, ulong A, ulong K, ulong N, slong prec) Precomputes a grid of Taylor polynomials for fast evaluation of `\zeta(s,a)` on `a \in (0,1]` with fixed *s*. *A* is the initial shift to apply to *a*, *K* is the number of Taylor terms, *N* is the number of grid points. The precomputation requires *NK* evaluations of the Hurwitz zeta function, and each subsequent evaluation requires *2K* simple arithmetic operations (polynomial evaluation) plus *A* powers. As *K* grows, the error is at most `O(1/(2AN)^K)`. This function can be called with *A* set to zero, in which case no Taylor series precomputation is performed. This means that evaluation will be identical to calling :func:`acb_dirichlet_hurwitz` directly. Otherwise, we require that *A*, *K* and *N* are all positive. For a finite error bound, we require `K+\operatorname{re}(s) > 1`. To avoid an initial "bump" that steals precision and slows convergence, *AN* should be at least roughly as large as `|s|`, e.g. it is a good idea to have at least `AN > 0.5 |s|`. If *deflate* is set, the deflated Hurwitz zeta function is used, removing the pole at `s = 1`. .. function:: void acb_dirichlet_hurwitz_precomp_init_num(acb_dirichlet_hurwitz_precomp_t pre, const acb_t s, int deflate, double num_eval, slong prec) Initializes *pre*, choosing the parameters *A*, *K*, and *N* automatically to minimize the cost of *num_eval* evaluations of the Hurwitz zeta function at argument *s* to precision *prec*. .. function:: void acb_dirichlet_hurwitz_precomp_clear(acb_dirichlet_hurwitz_precomp_t pre) Clears the precomputed data. .. function:: void acb_dirichlet_hurwitz_precomp_choose_param(ulong * A, ulong * K, ulong * N, const acb_t s, double num_eval, slong prec) Chooses precomputation parameters *A*, *K* and *N* to minimize the cost of *num_eval* evaluations of the Hurwitz zeta function at argument *s* to precision *prec*. If it is estimated that evaluating each Hurwitz zeta function from scratch would be better than performing a precomputation, *A*, *K* and *N* are all set to 0. .. function:: void acb_dirichlet_hurwitz_precomp_bound(mag_t res, const acb_t s, ulong A, ulong K, ulong N) Computes an upper bound for the truncation error (not accounting for roundoff error) when evaluating `\zeta(s,a)` with precomputation parameters *A*, *K*, *N*, assuming that `0 < a \le 1`. For details, see :ref:`algorithms_hurwitz`. .. function:: void acb_dirichlet_hurwitz_precomp_eval(acb_t res, const acb_dirichlet_hurwitz_precomp_t pre, ulong p, ulong q, slong prec) Evaluates `\zeta(s,p/q)` using precomputed data, assuming that `0 < p/q \le 1`. Stieltjes constants ------------------------------------------------------------------------------- .. function:: void acb_dirichlet_stieltjes(acb_t res, const fmpz_t n, const acb_t a, slong prec) Given a nonnegative integer *n*, sets *res* to the generalized Stieltjes constant `\gamma_n(a)` which is the coefficient in the Laurent series of the Hurwitz zeta function at the pole .. math :: \zeta(s,a) = \frac{1}{s-1} + \sum_{n=0}^\infty \frac{(-1)^n}{n!} \gamma_n(a) (s-1)^n. With `a = 1`, this gives the ordinary Stieltjes constants for the Riemann zeta function. This function uses an integral representation to permit fast computation for extremely large *n* [JB2018]_. If *n* is moderate and the precision is high enough, it falls back to evaluating the Hurwitz zeta function of a power series and reading off the last coefficient. Note that for computing a range of values `\gamma_0(a), \ldots, \gamma_n(a)`, it is generally more efficient to evaluate the Hurwitz zeta function series expansion once at `s = 1` than to call this function repeatedly, unless *n* is extremely large (at least several hundred). Dirichlet character evaluation ------------------------------------------------------------------------------- .. function:: void acb_dirichlet_chi(acb_t res, const dirichlet_group_t G, const dirichlet_char_t chi, ulong n, slong prec) Sets *res* to `\chi(n)`, the value of the Dirichlet character *chi* at the integer *n*. .. function:: void acb_dirichlet_chi_vec(acb_ptr v, const dirichlet_group_t G, const dirichlet_char_t chi, slong nv, slong prec) Compute the *nv* first Dirichlet values. .. function:: void acb_dirichlet_pairing(acb_t res, const dirichlet_group_t G, ulong m, ulong n, slong prec) .. function:: void acb_dirichlet_pairing_char(acb_t res, const dirichlet_group_t G, const dirichlet_char_t a, const dirichlet_char_t b, slong prec) Sets *res* to the value of the Dirichlet pairing `\chi(m,n)` at numbers `m` and `n`. The second form takes two characters as input. Dirichlet character Gauss, Jacobi and theta sums ------------------------------------------------------------------------------- .. function:: void acb_dirichlet_gauss_sum_naive(acb_t res, const dirichlet_group_t G, const dirichlet_char_t chi, slong prec) .. function:: void acb_dirichlet_gauss_sum_factor(acb_t res, const dirichlet_group_t G, const dirichlet_char_t chi, slong prec) .. function:: void acb_dirichlet_gauss_sum_order2(acb_t res, const dirichlet_char_t chi, slong prec) .. function:: void acb_dirichlet_gauss_sum_theta(acb_t res, const dirichlet_group_t G, const dirichlet_char_t chi, slong prec) .. function:: void acb_dirichlet_gauss_sum(acb_t res, const dirichlet_group_t G, const dirichlet_char_t chi, slong prec) .. function:: void acb_dirichlet_gauss_sum_ui(acb_t res, const dirichlet_group_t G, ulong a, slong prec) Sets *res* to the Gauss sum .. math:: G_q(a) = \sum_{x \bmod q} \chi_q(a, x) e^{\frac{2i\pi x}q} - the *naive* version computes the sum as defined. - the *factor* version writes it as a product of local Gauss sums by chinese remainder theorem. - the *order2* version assumes *chi* is real and primitive and returns `i^p\sqrt q` where `p` is the parity of `\chi`. - the *theta* version assumes that *chi* is primitive to obtain the Gauss sum by functional equation of the theta series at `t=1`. An abort will be raised if the theta series vanishes at `t=1`. Only 4 exceptional characters of conductor 300 and 600 are known to have this particularity, and none with primepower modulus. - the default version automatically combines the above methods. - the *ui* version only takes the Conrey number *a* as parameter. .. function:: void acb_dirichlet_jacobi_sum_naive(acb_t res, const dirichlet_group_t G, const dirichlet_char_t chi1, const dirichlet_char_t chi2, slong prec) .. function:: void acb_dirichlet_jacobi_sum_factor(acb_t res, const dirichlet_group_t G, const dirichlet_char_t chi1, const dirichlet_char_t chi2, slong prec) .. function:: void acb_dirichlet_jacobi_sum_gauss(acb_t res, const dirichlet_group_t G, const dirichlet_char_t chi1, const dirichlet_char_t chi2, slong prec) .. function:: void acb_dirichlet_jacobi_sum(acb_t res, const dirichlet_group_t G, const dirichlet_char_t chi1, const dirichlet_char_t chi2, slong prec) .. function:: void acb_dirichlet_jacobi_sum_ui(acb_t res, const dirichlet_group_t G, ulong a, ulong b, slong prec) Computes the Jacobi sum .. math:: J_q(a,b) = \sum_{x \bmod q} \chi_q(a, x)\chi_q(b, 1-x) - the *naive* version computes the sum as defined. - the *factor* version writes it as a product of local Jacobi sums - the *gauss* version assumes `ab` is primitive and uses the formula `J_q(a,b)G_q(ab) = G_q(a)G_q(b)` - the default version automatically combines the above methods. - the *ui* version only takes the Conrey numbers *a* and *b* as parameters. .. function:: void acb_dirichlet_chi_theta_arb(acb_t res, const dirichlet_group_t G, const dirichlet_char_t chi, const arb_t t, slong prec) .. function:: void acb_dirichlet_ui_theta_arb(acb_t res, const dirichlet_group_t G, ulong a, const arb_t t, slong prec) Compute the theta series `\Theta_q(a,t)` for real argument `t>0`. Beware that if `t<1` the functional equation .. math:: t \theta(a,t) = \epsilon(\chi) \theta\left(\frac1a, \frac1t\right) should be used, which is not done automatically (to avoid recomputing the Gauss sum). We call *theta series* of a Dirichlet character the quadratic series .. math:: \Theta_q(a) = \sum_{n\geq 0} \chi_q(a, n) n^p x^{n^2} where `p` is the parity of the character `\chi_q(a,\cdot)`. For `\Re(t)>0` we write `x(t)=\exp(-\frac{\pi}{N}t^2)` and define .. math:: \Theta_q(a,t) = \sum_{n\geq 0} \chi_q(a, n) x(t)^{n^2}. .. function:: ulong acb_dirichlet_theta_length(ulong q, const arb_t t, slong prec) Compute the number of terms to be summed in the theta series of argument *t* so that the tail is less than `2^{-\mathrm{prec}}`. .. function:: void acb_dirichlet_qseries_powers_naive(acb_t res, const arb_t x, int p, const ulong * a, const acb_dirichlet_powers_t z, slong len, slong prec) .. function:: void acb_dirichlet_qseries_powers_smallorder(acb_t res, const arb_t x, int p, const ulong * a, const acb_dirichlet_powers_t z, slong len, slong prec) Compute the series `\sum n^p z^{a_n} x^{n^2}` for exponent list *a*, precomputed powers *z* and parity *p* (being 0 or 1). The *naive* version sums the series as defined, while the *smallorder* variant evaluates the series on the quotient ring by a cyclotomic polynomial before evaluating at the root of unity, ignoring its argument *z*. Discrete Fourier transforms ------------------------------------------------------------------------------- If `f` is a function `\mathbb Z/q\mathbb Z\to \mathbb C`, its discrete Fourier transform is the function defined on Dirichlet characters mod `q` by .. math:: \hat f(\chi) = \sum_{x\mod q}\overline{\chi(x)}f(x) See the :ref:`acb-dft` module. Here we take advantage of the Conrey isomorphism `G \to \hat G` to consider the Fourier transform on Conrey labels as .. math:: g(a) = \sum_{b\bmod q}\overline{\chi_q(a,b)}f(b) .. function:: void acb_dirichlet_dft_conrey(acb_ptr w, acb_srcptr v, const dirichlet_group_t G, slong prec) Compute the DFT of *v* using Conrey indices. This function assumes *v* and *w* are vectors of size *G->phi_q*, whose values correspond to a lexicographic ordering of Conrey logs (as obtained using :func:`dirichlet_char_next` or by :func:`dirichlet_char_index`). For example, if `q=15`, the Conrey elements are stored in following order ======= ============= ===================== index log = [e,f] number = 7^e 11^f ======= ============= ===================== 0 [0, 0] 1 1 [0, 1] 7 2 [0, 2] 4 3 [0, 3] 13 4 [0, 4] 1 5 [1, 0] 11 6 [1, 1] 2 7 [1, 2] 14 8 [1, 3] 8 9 [1, 4] 11 ======= ============= ===================== .. function:: void acb_dirichlet_dft(acb_ptr w, acb_srcptr v, const dirichlet_group_t G, slong prec) Compute the DFT of *v* using Conrey numbers. This function assumes *v* and *w* are vectors of size *G->q*. All values at index not coprime to *G->q* are ignored. Dirichlet L-functions ------------------------------------------------------------------------------- .. function:: void acb_dirichlet_root_number_theta(acb_t res, const dirichlet_group_t G, const dirichlet_char_t chi, slong prec) .. function:: void acb_dirichlet_root_number(acb_t res, const dirichlet_group_t G, const dirichlet_char_t chi, slong prec) Sets *res* to the root number `\epsilon(\chi)` for a primitive character *chi*, which appears in the functional equation (where `p` is the parity of `\chi`): .. math:: \left(\frac{q}{\pi}\right)^{\frac{s+p}2}\Gamma\left(\frac{s+p}2\right) L(s, \chi) = \epsilon(\chi) \left(\frac{q}{\pi}\right)^{\frac{1-s+p}2}\Gamma\left(\frac{1-s+p}2\right) L(1 - s, \overline\chi) - The *theta* variant uses the evaluation at `t=1` of the Theta series. - The default version computes it via the gauss sum. .. function:: void acb_dirichlet_l_hurwitz(acb_t res, const acb_t s, const acb_dirichlet_hurwitz_precomp_t precomp, const dirichlet_group_t G, const dirichlet_char_t chi, slong prec) Computes `L(s,\chi)` using decomposition in terms of the Hurwitz zeta function .. math:: L(s,\chi) = q^{-s}\sum_{k=1}^q \chi(k) \,\zeta\!\left(s,\frac kq\right). If `s = 1` and `\chi` is non-principal, the deflated Hurwitz zeta function is used to avoid poles. If *precomp* is *NULL*, each Hurwitz zeta function value is computed directly. If a pre-initialized *precomp* object is provided, this will be used instead to evaluate the Hurwitz zeta function. .. function:: void acb_dirichlet_l_euler_product(acb_t res, const acb_t s, const dirichlet_group_t G, const dirichlet_char_t chi, slong prec) .. function:: void _acb_dirichlet_euler_product_real_ui(arb_t res, ulong s, const signed char * chi, int mod, int reciprocal, slong prec) Computes `L(s,\chi)` directly using the Euler product. This is efficient if *s* has large positive real part. As implemented, this function only gives a finite result if `\operatorname{re}(s) \ge 2`. An error bound is computed via :func:`mag_hurwitz_zeta_uiui`. If *s* is complex, replace it with its real part. Since .. math :: \frac{1}{L(s,\chi)} = \prod_{p} \left(1 - \frac{\chi(p)}{p^s}\right) = \sum_{k=1}^{\infty} \frac{\mu(k)\chi(k)}{k^s} and the truncated product gives all smooth-index terms in the series, we have .. math :: \left|\prod_{p < N} \left(1 - \frac{\chi(p)}{p^s}\right) - \frac{1}{L(s,\chi)}\right| \le \sum_{k=N}^{\infty} \frac{1}{k^s} = \zeta(s,N). The underscore version specialized for integer *s* assumes that `\chi` is a real Dirichlet character given by the explicit list *chi* of character values at 0, 1, ..., *mod* - 1. If *reciprocal* is set, it computes `1 / L(s,\chi)` (this is faster if the reciprocal can be used directly). .. function:: void acb_dirichlet_l(acb_t res, const acb_t s, const dirichlet_group_t G, const dirichlet_char_t chi, slong prec) Computes `L(s,\chi)` using a default choice of algorithm. .. function:: void acb_dirichlet_l_fmpq(acb_t res, const fmpq_t s, const dirichlet_group_t G, const dirichlet_char_t chi, slong prec) void acb_dirichlet_l_fmpq_afe(acb_t res, const fmpq_t s, const dirichlet_group_t G, const dirichlet_char_t chi, slong prec) Computes `L(s,\chi)` where *s* is a rational number. The *afe* version uses the approximate functional equation; the default version chooses an algorithm automatically. .. function:: void acb_dirichlet_l_vec_hurwitz(acb_ptr res, const acb_t s, const acb_dirichlet_hurwitz_precomp_t precomp, const dirichlet_group_t G, slong prec) Compute all values `L(s,\chi)` for `\chi` mod `q`, using the Hurwitz zeta function and a discrete Fourier transform. The output *res* is assumed to have length *G->phi_q* and values are stored by lexicographically ordered Conrey logs. See :func:`acb_dirichlet_dft_conrey`. If *precomp* is *NULL*, each Hurwitz zeta function value is computed directly. If a pre-initialized *precomp* object is provided, this will be used instead to evaluate the Hurwitz zeta function. .. function:: void acb_dirichlet_l_jet(acb_ptr res, const acb_t s, const dirichlet_group_t G, const dirichlet_char_t chi, int deflate, slong len, slong prec) Computes the Taylor expansion of `L(s,\chi)` to length *len*, i.e. `L(s), L'(s), \ldots, L^{(len-1)}(s) / (len-1)!`. If *deflate* is set, computes the expansion of .. math :: L(s,\chi) - \frac{\sum_{k=1}^q \chi(k)}{(s-1)q} instead. If *chi* is a principal character, then this has the effect of subtracting the pole with residue `\sum_{k=1}^q \chi(k) = \phi(q) / q` that is located at `s = 1`. In particular, when evaluated at `s = 1`, this gives the regular part of the Laurent expansion. When *chi* is non-principal, *deflate* has no effect. .. function:: void _acb_dirichlet_l_series(acb_ptr res, acb_srcptr s, slong slen, const dirichlet_group_t G, const dirichlet_char_t chi, int deflate, slong len, slong prec) .. function:: void acb_dirichlet_l_series(acb_poly_t res, const acb_poly_t s, const dirichlet_group_t G, const dirichlet_char_t chi, int deflate, slong len, slong prec) Sets *res* to the power series `L(s,\chi)` where *s* is a given power series, truncating the result to length *len*. See :func:`acb_dirichlet_l_jet` for the meaning of the *deflate* flag. Hardy Z-functions ------------------------------------------------------------------------------- For convenience, setting both *G* and *chi* to *NULL* in the following methods selects the Riemann zeta function. Currently, these methods require *chi* to be a primitive character. .. function:: void acb_dirichlet_hardy_theta(acb_ptr res, const acb_t t, const dirichlet_group_t G, const dirichlet_char_t chi, slong len, slong prec) Computes the phase function used to construct the Z-function. We have .. math :: \theta(t) = -\frac{t}{2} \log(\pi/q) - \frac{i \log(\epsilon)}{2} + \frac{\log \Gamma((s+\delta)/2) - \log \Gamma((1-s+\delta)/2)}{2i} where `s = 1/2+it`, `\delta` is the parity of *chi*, and `\epsilon` is the root number as computed by :func:`acb_dirichlet_root_number`. The first *len* terms in the Taylor expansion are written to the output. .. function:: void acb_dirichlet_hardy_z(acb_t res, const acb_t t, const dirichlet_group_t G, const dirichlet_char_t chi, slong len, slong prec) Computes the Hardy Z-function, also known as the Riemann-Siegel Z-function `Z(t) = e^{i \theta(t)} L(1/2+it)`, which is real-valued for real *t*. The first *len* terms in the Taylor expansion are written to the output. .. function:: void _acb_dirichlet_hardy_theta_series(acb_ptr res, acb_srcptr t, slong tlen, const dirichlet_group_t G, const dirichlet_char_t chi, slong len, slong prec) .. function:: void acb_dirichlet_hardy_theta_series(acb_poly_t res, const acb_poly_t t, const dirichlet_group_t G, const dirichlet_char_t chi, slong len, slong prec) Sets *res* to the power series `\theta(t)` where *t* is a given power series, truncating the result to length *len*. .. function:: void _acb_dirichlet_hardy_z_series(acb_ptr res, acb_srcptr t, slong tlen, const dirichlet_group_t G, const dirichlet_char_t chi, slong len, slong prec) .. function:: void acb_dirichlet_hardy_z_series(acb_poly_t res, const acb_poly_t t, const dirichlet_group_t G, const dirichlet_char_t chi, slong len, slong prec) Sets *res* to the power series `Z(t)` where *t* is a given power series, truncating the result to length *len*. Gram points ------------------------------------------------------------------------------- .. function:: void acb_dirichlet_gram_point(arb_t res, const fmpz_t n, const dirichlet_group_t G, const dirichlet_char_t chi, slong prec) Sets *res* to the *n*-th Gram point `g_n`, defined as the unique solution in `[7, \infty)` of `\theta(g_n) = \pi n`. Currently only the Gram points corresponding to the Riemann zeta function are supported and *G* and *chi* must both be set to *NULL*. Requires `n \ge -1`. Riemann zeta function zeros ------------------------------------------------------------------------------- The following functions for counting and isolating zeros of the Riemann zeta function use the ideas from the implementation of Turing's method in mpmath [Joh2018b]_ by Juan Arias de Reyna, described in [Ari2012]_. .. function:: ulong acb_dirichlet_turing_method_bound(const fmpz_t p) Computes an upper bound *B* for the minimum number of consecutive good Gram blocks sufficient to count nontrivial zeros of the Riemann zeta function using Turing's method [Tur1953]_ as updated by [Leh1970]_, [Bre1979]_, and [Tru2011]_. Let `N(T)` denote the number of zeros (counted according to their multiplicities) of `\zeta(s)` in the region `0 < \operatorname{Im}(s) \le T`. If at least *B* consecutive Gram blocks with union `[g_n, g_p)` satisfy Rosser's rule, then `N(g_n) \le n + 1` and `N(g_p) \ge p + 1`. .. function:: int _acb_dirichlet_definite_hardy_z(arb_t res, const arf_t t, slong * pprec) Sets *res* to the Hardy Z-function `Z(t)`. The initial precision (* *pprec*) is increased as necessary to determine the sign of `Z(t)`. The sign is returned. .. function:: void _acb_dirichlet_isolate_gram_hardy_z_zero(arf_t a, arf_t b, const fmpz_t n) Uses Gram's law to compute an interval `(a, b)` that contains the *n*-th zero of the Hardy Z-function and no other zero. Requires `1 \le n \le 126`. .. function:: void _acb_dirichlet_isolate_rosser_hardy_z_zero(arf_t a, arf_t b, const fmpz_t n) Uses Rosser's rule to compute an interval `(a, b)` that contains the *n*-th zero of the Hardy Z-function and no other zero. Requires `1 \le n \le 13999526`. .. function:: void _acb_dirichlet_isolate_turing_hardy_z_zero(arf_t a, arf_t b, const fmpz_t n) Computes an interval `(a, b)` that contains the *n*-th zero of the Hardy Z-function and no other zero, following Turing's method. Requires `n \ge 2`. .. function:: void acb_dirichlet_isolate_hardy_z_zero(arf_t a, arf_t b, const fmpz_t n) Computes an interval `(a, b)` that contains the *n*-th zero of the Hardy Z-function and contains no other zero, using the most appropriate underscore version of this function. Requires `n \ge 1`. .. function:: void _acb_dirichlet_refine_hardy_z_zero(arb_t res, const arf_t a, const arf_t b, slong prec) Sets *res* to the unique zero of the Hardy Z-function in the interval `(a, b)`. .. function:: void acb_dirichlet_hardy_z_zero(arb_t res, const fmpz_t n, slong prec) Sets *res* to the *n*-th zero of the Hardy Z-function, requiring `n \ge 1`. .. function:: void acb_dirichlet_hardy_z_zeros(arb_ptr res, const fmpz_t n, slong len, slong prec) Sets the entries of *res* to *len* consecutive zeros of the Hardy Z-function, beginning with the *n*-th zero. Requires positive *n*. .. function:: void acb_dirichlet_zeta_zero(acb_t res, const fmpz_t n, slong prec) Sets *res* to the *n*-th nontrivial zero of `\zeta(s)`, requiring `n \ge 1`. .. function:: void acb_dirichlet_zeta_zeros(acb_ptr res, const fmpz_t n, slong len, slong prec) Sets the entries of *res* to *len* consecutive nontrivial zeros of `\zeta(s)` beginning with the *n*-th zero. Requires positive *n*. .. function:: void _acb_dirichlet_exact_zeta_nzeros(fmpz_t res, const arf_t t) .. function:: void acb_dirichlet_zeta_nzeros(arb_t res, const arb_t t, slong prec) Compute the number of zeros (counted according to their multiplicities) of `\zeta(s)` in the region `0 < \operatorname{Im}(s) \le t`. .. function:: void acb_dirichlet_backlund_s(arb_t res, const arb_t t, slong prec) Compute `S(t) = \frac{1}{\pi}\operatorname{arg}\zeta(\frac{1}{2} + it)` where the argument is defined by continuous variation of `s` in `\zeta(s)` starting at `s = 2`, then vertically to `s = 2 + it`, then horizontally to `s = \frac{1}{2} + it`. In particular `\operatorname{arg}` in this context is not the principal value of the argument, and it cannot be computed directly by :func:`acb_arg`. In practice `S(t)` is computed as `S(t) = N(t) - \frac{1}{\pi}\theta(t) - 1` where `N(t)` is :func:`acb_dirichlet_zeta_nzeros` and `\theta(t)` is :func:`acb_dirichlet_hardy_theta`. .. function:: void acb_dirichlet_backlund_s_bound(mag_t res, const arb_t t) Compute an upper bound for `|S(t)|` quickly. Theorem 1 and the bounds in (1.2) in [Tru2014]_ are used. .. function:: void acb_dirichlet_zeta_nzeros_gram(fmpz_t res, const fmpz_t n) Compute `N(g_n)`. That is, compute the number of zeros (counted according to their multiplicities) of `\zeta(s)` in the region `0 < \operatorname{Im}(s) \le g_n` where `g_n` is the *n*-th Gram point. Requires `n \ge -1`. .. function:: slong acb_dirichlet_backlund_s_gram(const fmpz_t n) Compute `S(g_n)` where `g_n` is the *n*-th Gram point. Requires `n \ge -1`. Riemann zeta function zeros (Platt's method) ------------------------------------------------------------------------------- The following functions related to the Riemann zeta function use the ideas and formulas described by David J. Platt in [Pla2017]_. .. function:: void acb_dirichlet_platt_scaled_lambda(arb_t res, const arb_t t, slong prec) Compute `\Lambda(t) e^{\pi t/4}` where .. math :: \Lambda(t) = \pi^{-\frac{it}{2}} \Gamma\left(\frac{\frac{1}{2}+it}{2}\right) \zeta\left(\frac{1}{2} + it\right) is defined in the beginning of section 3 of [Pla2017]_. As explained in [Pla2011]_ this function has the same zeros as `\zeta(1/2 + it)` and is real-valued by the functional equation, and the exponential factor is designed to counteract the decay of the gamma factor as `t` increases. .. function:: void acb_dirichlet_platt_scaled_lambda_vec(arb_ptr res, const fmpz_t T, slong A, slong B, slong prec) .. function:: void acb_dirichlet_platt_multieval(arb_ptr res, const fmpz_t T, slong A, slong B, const arb_t h, slong J, slong K, slong sigma, slong prec) .. function:: void acb_dirichlet_platt_multieval_threaded(arb_ptr res, const fmpz_t T, slong A, slong B, const arb_t h, slong J, slong K, slong sigma, slong prec) Compute :func:`acb_dirichlet_platt_scaled_lambda` at `N=AB` points on a grid, following the notation of [Pla2017]_. The first point on the grid is `T - B/2` and the distance between grid points is `1/A`. The product `N=AB` must be an even integer. The multieval versions evaluate the function at all points on the grid simultaneously using discrete Fourier transforms, and they require the four additional tuning parameters *h*, *J*, *K*, and *sigma*. The *threaded* multieval version splits the computation over the number of threads returned by *flint_get_num_threads()*, while the default multieval version chooses whether to use multithreading automatically. .. function:: void acb_dirichlet_platt_ws_interpolation(arb_t res, arf_t deriv, const arb_t t0, arb_srcptr p, const fmpz_t T, slong A, slong B, slong Ns_max, const arb_t H, slong sigma, slong prec) Compute :func:`acb_dirichlet_platt_scaled_lambda` at *t0* by Gaussian-windowed Whittaker-Shannon interpolation of points evaluated by :func:`acb_dirichlet_platt_scaled_lambda_vec`. The derivative is also approximated if the output parameter *deriv* is not *NULL*. *Ns_max* defines the maximum number of supporting points to be used in the interpolation on either side of *t0*. *H* is the standard deviation of the Gaussian window centered on *t0* to be applied before the interpolation. *sigma* is an odd positive integer tuning parameter `\sigma \in 2\mathbb{Z}_{>0}+1` used in computing error bounds. .. function:: slong _acb_dirichlet_platt_local_hardy_z_zeros(arb_ptr res, const fmpz_t n, slong len, const fmpz_t T, slong A, slong B, const arb_t h, slong J, slong K, slong sigma_grid, slong Ns_max, const arb_t H, slong sigma_interp, slong prec) .. function:: slong acb_dirichlet_platt_local_hardy_z_zeros(arb_ptr res, const fmpz_t n, slong len, slong prec) .. function:: slong acb_dirichlet_platt_hardy_z_zeros(arb_ptr res, const fmpz_t n, slong len, slong prec) Sets at most the first *len* entries of *res* to consecutive zeros of the Hardy Z-function starting with the *n*-th zero. The number of obtained consecutive zeros is returned. The first two function variants each make a single call to Platt's grid evaluation of the scaled Lambda function, whereas the third variant performs as many evaluations as necessary to obtain *len* consecutive zeros. The final several parameters of the underscored local variant have the same meanings as in the functions :func:`acb_dirichlet_platt_multieval` and :func:`acb_dirichlet_platt_ws_interpolation`. The non-underscored variants currently expect `10^4 \leq n \leq 10^{23}`. The user has the option of multi-threading through *flint_set_num_threads(numthreads)*. .. function:: slong acb_dirichlet_platt_zeta_zeros(acb_ptr res, const fmpz_t n, slong len, slong prec) Sets at most the first *len* entries of *res* to consecutive zeros of the Riemann zeta function starting with the *n*-th zero. The number of obtained consecutive zeros is returned. It currently expects `10^4 \leq n \leq 10^{23}`. The user has the option of multi-threading through *flint_set_num_threads(numthreads)*.