/* This file is public domain. Author: Fredrik Johansson. */ #include #include "arb_mat.h" #include "acb_mat.h" #include "flint/profiler.h" int main(int argc, char *argv[]) { arb_mat_t A; arb_t det; slong i, prec, n; int eig; if (argc < 2 || (argc == 3 && strcmp(argv[1], "-eig"))) { flint_printf("usage: build/examples/hilbert_matrix [-eig] n\n"); return 1; } if (argc == 2) eig = 0; else eig = 1; n = atol(argv[argc-1]); if (eig && (n == 0)) { flint_printf("smallest eigenvalue: undefined for n == 0\n"); return 1; } arb_mat_init(A, n, n); arb_init(det); TIMEIT_ONCE_START for (prec = 20; ; prec *= 2) { arb_mat_hilbert(A, prec); flint_printf("prec=%wd: ", prec); if (eig == 0) { arb_mat_det(det, A, prec); } else { acb_mat_t C, R; acb_ptr E; acb_mat_init(R, n, n); acb_mat_init(C, n, n); E = _acb_vec_init(n); acb_mat_set_arb_mat(C, A); acb_mat_approx_eig_qr(E, NULL, R, C, NULL, 0, prec); if (acb_mat_eig_simple(E, NULL, NULL, C, E, R, prec)) { /* A is symmetric so the eigenvalues are real */ for (i = 0; i < n; i++) arb_zero(acb_imagref(E + i)); /* With isolated eigenvalues, sorting midpoints gives the right result. */ _acb_vec_sort_pretty(E, n); acb_get_real(det, E + 0); } else { arb_indeterminate(det); } acb_mat_clear(R); acb_mat_clear(C); _acb_vec_clear(E, n); } arb_printn(det, 10, 0); flint_printf("\n"); if (!arb_contains_zero(det)) { flint_printf("success!\n"); break; } } TIMEIT_ONCE_STOP SHOW_MEMORY_USAGE arb_mat_clear(A); arb_clear(det); flint_cleanup(); return 0; }