/* Rigorous numerical integration (with fast convergence for piecewise holomorphic functions) using Gauss-Legendre quadrature and adaptive subdivision. Author: Fredrik Johansson. This file is in the public domain. */ #include #include "flint/profiler.h" #include "arb_hypgeom.h" #include "acb_hypgeom.h" #include "acb_dirichlet.h" #include "acb_modular.h" #include "acb_calc.h" /* ------------------------------------------------------------------------- */ /* Example integrands */ /* ------------------------------------------------------------------------- */ /* f(z) = sin(z) */ int f_sin(acb_ptr res, const acb_t z, void * param, slong order, slong prec) { if (order > 1) flint_abort(); /* Would be needed for Taylor method. */ acb_sin(res, z, prec); return 0; } /* f(z) = floor(z) */ int f_floor(acb_ptr res, const acb_t z, void * param, slong order, slong prec) { if (order > 1) flint_abort(); /* Would be needed for Taylor method. */ acb_real_floor(res, z, order != 0, prec); return 0; } /* f(z) = sqrt(1-z^2) */ int f_circle(acb_ptr res, const acb_t z, void * param, slong order, slong prec) { if (order > 1) flint_abort(); /* Would be needed for Taylor method. */ acb_one(res); acb_submul(res, z, z, prec); acb_real_sqrtpos(res, res, order != 0, prec); return 0; } /* f(z) = 1/(1+z^2) */ int f_atanderiv(acb_ptr res, const acb_t z, void * param, slong order, slong prec) { if (order > 1) flint_abort(); /* Would be needed for Taylor method. */ acb_mul(res, z, z, prec); acb_add_ui(res, res, 1, prec); acb_inv(res, res, prec); return 0; } /* f(z) = sin(z + exp(z)) -- Rump's oscillatory example */ int f_rump(acb_ptr res, const acb_t z, void * param, slong order, slong prec) { if (order > 1) flint_abort(); /* Would be needed for Taylor method. */ acb_exp(res, z, prec); acb_add(res, res, z, prec); acb_sin(res, res, prec); return 0; } /* f(z) = |z^4 + 10z^3 + 19z^2 - 6z - 6| exp(z) (for real z) -- Helfgott's integral on MathOverflow */ int f_helfgott(acb_ptr res, const acb_t z, void * param, slong order, slong prec) { if (order > 1) flint_abort(); /* Would be needed for Taylor method. */ acb_add_si(res, z, 10, prec); acb_mul(res, res, z, prec); acb_add_si(res, res, 19, prec); acb_mul(res, res, z, prec); acb_add_si(res, res, -6, prec); acb_mul(res, res, z, prec); acb_add_si(res, res, -6, prec); acb_real_abs(res, res, order != 0, prec); if (acb_is_finite(res)) { acb_t t; acb_init(t); acb_exp(t, z, prec); acb_mul(res, res, t, prec); acb_clear(t); } return 0; } /* f(z) = zeta(z) */ int f_zeta(acb_ptr res, const acb_t z, void * param, slong order, slong prec) { if (order > 1) flint_abort(); /* Would be needed for Taylor method. */ acb_zeta(res, z, prec); return 0; } /* f(z) = z sin(1/z), assume on real interval */ int f_essing2(acb_ptr res, const acb_t z, void * param, slong order, slong prec) { if (order > 1) flint_abort(); /* Would be needed for Taylor method. */ if ((order == 0) && acb_is_real(z) && arb_contains_zero(acb_realref(z))) { /* todo: arb_zero_pm_one, arb_unit_interval? */ acb_zero(res); mag_one(arb_radref(acb_realref(res))); } else { acb_inv(res, z, prec); acb_sin(res, res, prec); } acb_mul(res, res, z, prec); return 0; } /* f(z) = sin(1/z), assume on real interval */ int f_essing(acb_ptr res, const acb_t z, void * param, slong order, slong prec) { if (order > 1) flint_abort(); /* Would be needed for Taylor method. */ if ((order == 0) && acb_is_real(z) && arb_contains_zero(acb_realref(z))) { /* todo: arb_zero_pm_one, arb_unit_interval? */ acb_zero(res); mag_one(arb_radref(acb_realref(res))); } else { acb_inv(res, z, prec); acb_sin(res, res, prec); } return 0; } /* f(z) = exp(-z) z^1000 */ int f_factorial1000(acb_ptr res, const acb_t z, void * param, slong order, slong prec) { acb_t t; if (order > 1) flint_abort(); /* Would be needed for Taylor method. */ acb_init(t); acb_pow_ui(t, z, 1000, prec); acb_neg(res, z); acb_exp(res, res, prec); acb_mul(res, res, t, prec); acb_clear(t); return 0; } /* f(z) = gamma(z) */ int f_gamma(acb_ptr res, const acb_t z, void * param, slong order, slong prec) { if (order > 1) flint_abort(); /* Would be needed for Taylor method. */ acb_gamma(res, z, prec); return 0; } /* f(z) = sin(z) + exp(-200-z^2) */ int f_sin_plus_small(acb_ptr res, const acb_t z, void * param, slong order, slong prec) { acb_t t; if (order > 1) flint_abort(); /* Would be needed for Taylor method. */ acb_init(t); acb_mul(t, z, z, prec); acb_add_ui(t, t, 200, prec); acb_neg(t, t); acb_exp(t, t, prec); acb_sin(res, z, prec); acb_add(res, res, t, prec); acb_clear(t); return 0; } /* f(z) = exp(z) */ int f_exp(acb_ptr res, const acb_t z, void * param, slong order, slong prec) { if (order > 1) flint_abort(); /* Would be needed for Taylor method. */ acb_exp(res, z, prec); return 0; } /* f(z) = exp(-z^2) */ int f_gaussian(acb_ptr res, const acb_t z, void * param, slong order, slong prec) { if (order > 1) flint_abort(); /* Would be needed for Taylor method. */ acb_mul(res, z, z, prec); acb_neg(res, res); acb_exp(res, res, prec); return 0; } int f_monster(acb_ptr res, const acb_t z, void * param, slong order, slong prec) { acb_t t; if (order > 1) flint_abort(); /* Would be needed for Taylor method. */ acb_init(t); acb_exp(t, z, prec); acb_real_floor(res, t, order != 0, prec); if (acb_is_finite(res)) { acb_sub(res, t, res, prec); acb_add(t, t, z, prec); acb_sin(t, t, prec); acb_mul(res, res, t, prec); } acb_clear(t); return 0; } /* f(z) = sech(10(x-0.2))^2 + sech(100(x-0.4))^4 + sech(1000(x-0.6))^6 */ int f_spike(acb_ptr res, const acb_t z, void * param, slong order, slong prec) { acb_t a, b, c; if (order > 1) flint_abort(); /* Would be needed for Taylor method. */ acb_init(a); acb_init(b); acb_init(c); acb_mul_ui(a, z, 10, prec); acb_sub_ui(a, a, 2, prec); acb_sech(a, a, prec); acb_pow_ui(a, a, 2, prec); acb_mul_ui(b, z, 100, prec); acb_sub_ui(b, b, 40, prec); acb_sech(b, b, prec); acb_pow_ui(b, b, 4, prec); acb_mul_ui(c, z, 1000, prec); acb_sub_ui(c, c, 600, prec); acb_sech(c, c, prec); acb_pow_ui(c, c, 6, prec); acb_add(res, a, b, prec); acb_add(res, res, c, prec); acb_clear(a); acb_clear(b); acb_clear(c); return 0; } /* f(z) = sech(z) */ int f_sech(acb_ptr res, const acb_t z, void * param, slong order, slong prec) { if (order > 1) flint_abort(); /* Would be needed for Taylor method. */ acb_sech(res, z, prec); return 0; } /* f(z) = sech^3(z) */ int f_sech3(acb_ptr res, const acb_t z, void * param, slong order, slong prec) { if (order > 1) flint_abort(); /* Would be needed for Taylor method. */ acb_sech(res, z, prec); acb_cube(res, res, prec); return 0; } /* f(z) = -log(z) / (1 + z) */ int f_log_div1p(acb_ptr res, const acb_t z, void * param, slong order, slong prec) { acb_t t; if (order > 1) flint_abort(); /* Would be needed for Taylor method. */ acb_init(t); acb_add_ui(t, z, 1, prec); acb_log(res, z, prec); acb_div(res, res, t, prec); acb_neg(res, res); acb_clear(t); return 0; } /* f(z) = z exp(-z) / (1 + exp(-z)) */ int f_log_div1p_transformed(acb_ptr res, const acb_t z, void * param, slong order, slong prec) { acb_t t; if (order > 1) flint_abort(); /* Would be needed for Taylor method. */ acb_init(t); acb_neg(t, z); acb_exp(t, t, prec); acb_add_ui(res, t, 1, prec); acb_div(res, t, res, prec); acb_mul(res, res, z, prec); acb_clear(t); return 0; } int f_elliptic_p_laurent_n(acb_ptr res, const acb_t z, void * param, slong order, slong prec) { slong n; acb_t tau; if (order > 1) flint_abort(); /* Would be needed for Taylor method. */ n = ((slong *)(param))[0]; acb_init(tau); acb_onei(tau); acb_modular_elliptic_p(res, z, tau, prec); acb_pow_si(tau, z, -n - 1, prec); acb_mul(res, res, tau, prec); acb_clear(tau); return 0; } /* f(z) = zeta'(z) / zeta(z) */ int f_zeta_frac(acb_ptr res, const acb_t z, void * param, slong order, slong prec) { acb_struct t[2]; if (order > 1) flint_abort(); /* Would be needed for Taylor method. */ acb_init(t); acb_init(t + 1); acb_dirichlet_zeta_jet(t, z, 0, 2, prec); acb_div(res, t + 1, t, prec); acb_clear(t); acb_clear(t + 1); return 0; } int f_lambertw(acb_ptr res, const acb_t z, void * param, slong order, slong prec) { acb_t t; if (order > 1) flint_abort(); /* Would be needed for Taylor method. */ acb_init(t); prec = FLINT_MIN(prec, acb_rel_accuracy_bits(z) + 10); if (order != 0) { /* check for branch cut */ arb_const_e(acb_realref(t), prec); acb_inv(t, t, prec); acb_add(t, t, z, prec); if (arb_contains_zero(acb_imagref(t)) && arb_contains_nonpositive(acb_realref(t))) { acb_indeterminate(t); } } if (acb_is_finite(t)) { fmpz_t k; fmpz_init(k); acb_lambertw(res, z, k, 0, prec); fmpz_clear(k); } else { acb_indeterminate(res); } acb_clear(t); return 0; } /* f(z) = max(sin(z), cos(z)) */ int f_max_sin_cos(acb_ptr res, const acb_t z, void * param, slong order, slong prec) { acb_t s, c; if (order > 1) flint_abort(); /* Would be needed for Taylor method. */ acb_init(s); acb_init(c); acb_sin_cos(s, c, z, prec); acb_real_max(res, s, c, order != 0, prec); acb_clear(s); acb_clear(c); return 0; } /* f(z) = erf(z/sqrt(0.0002)*0.5 +1.5)*exp(-z), example provided by Silviu-Ioan Filip */ int f_erf_bent(acb_ptr res, const acb_t z, void * param, slong order, slong prec) { acb_t t; if (order > 1) flint_abort(); /* Would be needed for Taylor method. */ acb_init(t); acb_set_ui(t, 1250); acb_sqrt(t, t, prec); acb_mul(t, t, z, prec); acb_set_d(res, 1.5); acb_add(res, res, t, prec); acb_hypgeom_erf(res, res, prec); acb_neg(t, z); acb_exp(t, t, prec); acb_mul(res, res, t, prec); acb_clear(t); return 0; } /* f(z) = Ai(z) */ int f_airy_ai(acb_ptr res, const acb_t z, void * param, slong order, slong prec) { if (order > 1) flint_abort(); /* Would be needed for Taylor method. */ acb_hypgeom_airy(res, NULL, NULL, NULL, z, prec); return 0; } int f_horror(acb_ptr res, const acb_t z, void * param, slong order, slong prec) { acb_t s, t; if (order > 1) flint_abort(); /* Would be needed for Taylor method. */ acb_init(s); acb_init(t); acb_real_floor(res, z, order != 0, prec); if (acb_is_finite(res)) { acb_sub(res, z, res, prec); acb_set_d(t, 0.5); acb_sub(res, res, t, prec); acb_sin_cos(s, t, z, prec); acb_real_max(s, s, t, order != 0, prec); acb_mul(res, res, s, prec); } acb_clear(s); acb_clear(t); return 0; } /* f(z) = sqrt(z) */ int f_sqrt(acb_ptr res, const acb_t z, void * param, slong order, slong prec) { if (order > 1) flint_abort(); /* Would be needed for Taylor method. */ acb_sqrt_analytic(res, z, order != 0, prec); return 0; } /* f(z) = 1/sqrt(z) */ int f_rsqrt(acb_ptr res, const acb_t z, void * param, slong order, slong prec) { if (order > 1) flint_abort(); /* Would be needed for Taylor method. */ acb_rsqrt_analytic(res, z, order != 0, prec); return 0; } /* f(z) = rgamma(z) */ int f_rgamma(acb_ptr res, const acb_t z, void * param, slong order, slong prec) { if (order > 1) flint_abort(); /* Would be needed for Taylor method. */ acb_rgamma(res, z, prec); return 0; } /* f(z) = exp(-z^2+iz) */ int f_gaussian_twist(acb_ptr res, const acb_t z, void * param, slong order, slong prec) { if (order > 1) flint_abort(); /* Would be needed for Taylor method. */ acb_mul_onei(res, z); acb_submul(res, z, z, prec); acb_exp(res, res, prec); return 0; } /* f(z) = exp(-z) Ai(-z) */ int f_exp_airy(acb_ptr res, const acb_t z, void * param, slong order, slong prec) { acb_t t; if (order > 1) flint_abort(); /* Would be needed for Taylor method. */ acb_init(t); acb_neg(t, z); acb_hypgeom_airy(res, NULL, NULL, NULL, t, prec); acb_exp(t, t, prec); acb_mul(res, res, t, prec); acb_clear(t); return 0; } /* f(z) = z sin(z) / (1 + cos(z)^2) */ int f_sin_cos_frac(acb_ptr res, const acb_t z, void * param, slong order, slong prec) { acb_t s, c; if (order > 1) flint_abort(); /* Would be needed for Taylor method. */ acb_init(s); acb_init(c); acb_sin_cos(s, c, z, prec); acb_mul(c, c, c, prec); acb_add_ui(c, c, 1, prec); acb_mul(s, s, z, prec); acb_div(res, s, c, prec); acb_clear(s); acb_clear(c); return 0; } /* f(z) = sin((1/1000 + (1-z)^2)^(-3/2)), example from Mioara Joldes' thesis (suggested by Nicolas Brisebarre) */ int f_sin_near_essing(acb_ptr res, const acb_t z, void * param, slong order, slong prec) { acb_t t, u; if (order > 1) flint_abort(); /* Would be needed for Taylor method. */ acb_init(t); acb_init(u); acb_sub_ui(t, z, 1, prec); acb_neg(t, t); acb_mul(t, t, t, prec); acb_one(u); acb_div_ui(u, u, 1000, prec); acb_add(t, t, u, prec); acb_set_d(u, -1.5); acb_pow_analytic(t, t, u, order != 0, prec); acb_sin(res, t, prec); acb_clear(t); acb_clear(u); return 0; } /* f(z) = exp(-z) (I_0(z/k))^k, from Bruno Salvy */ int f_scaled_bessel(acb_ptr res, const acb_t z, void * param, slong order, slong prec) { acb_t nu; ulong k = ((ulong *) param)[0]; acb_init(nu); acb_div_ui(res, z, k, prec); acb_hypgeom_bessel_i_scaled(res, nu, res, prec); acb_pow_ui(res, res, k, prec); acb_clear(nu); return 0; } /* Bound for scaled Bessel function: 2/(2 pi x)^(1/2) Bound for tail of integral: 2 N (k / (pi N))^(k / 2) / (k - 2). */ void scaled_bessel_tail_bound(arb_t b, ulong k, const arb_t N, slong prec) { arb_const_pi(b, prec); arb_mul(b, b, N, prec); arb_ui_div(b, k, b, prec); arb_sqrt(b, b, prec); arb_pow_ui(b, b, k, prec); arb_mul(b, b, N, prec); arb_mul_ui(b, b, 2, prec); arb_div_ui(b, b, k - 2, prec); } void scaled_bessel_select_N(arb_t N, ulong k, slong prec) { slong e; double f = log(k/3.14159265358979)/log(2); e = 1; while ((k / 2.0) * (e - f) - e < prec + 5) e++; arb_one(N); arb_mul_2exp_si(N, N, e); } /* ------------------------------------------------------------------------- */ /* Main test program */ /* ------------------------------------------------------------------------- */ #define NUM_INTEGRALS 37 const char * descr[NUM_INTEGRALS] = { "int_0^100 sin(x) dx", "4 int_0^1 1/(1+x^2) dx", "2 int_0^{inf} 1/(1+x^2) dx (using domain truncation)", "4 int_0^1 sqrt(1-x^2) dx", "int_0^8 sin(x+exp(x)) dx", "int_1^101 floor(x) dx", "int_0^1 |x^4+10x^3+19x^2-6x-6| exp(x) dx", "1/(2 pi i) int zeta(s) ds (closed path around s = 1)", "int_0^1 sin(1/x) dx (slow convergence, use -heap and/or -tol)", "int_0^1 x sin(1/x) dx (slow convergence, use -heap and/or -tol)", "int_0^10000 x^1000 exp(-x) dx", "int_1^{1+1000i} gamma(x) dx", "int_{-10}^{10} sin(x) + exp(-200-x^2) dx", "int_{-1020}^{-1010} exp(x) dx (use -tol 0 for relative error)", "int_0^{inf} exp(-x^2) dx (using domain truncation)", "int_0^1 sech(10(x-0.2))^2 + sech(100(x-0.4))^4 + sech(1000(x-0.6))^6 dx", "int_0^8 (exp(x)-floor(exp(x))) sin(x+exp(x)) dx (use higher -eval)", "int_0^{inf} sech(x) dx (using domain truncation)", "int_0^{inf} sech^3(x) dx (using domain truncation)", "int_0^1 -log(x)/(1+x) dx (using domain truncation)", "int_0^{inf} x exp(-x)/(1+exp(-x)) dx (using domain truncation)", "int_C wp(x)/x^(11) dx (contour for 10th Laurent coefficient of Weierstrass p-function)", "N(1000) = count zeros with 0 < t <= 1000 of zeta(s) using argument principle", "int_0^{1000} W_0(x) dx", "int_0^pi max(sin(x), cos(x)) dx", "int_{-1}^1 erf(x/sqrt(0.0002)*0.5+1.5)*exp(-x) dx", "int_{-10}^10 Ai(x) dx", "int_0^10 (x-floor(x)-1/2) max(sin(x),cos(x)) dx", "int_{-1-i}^{-1+i} sqrt(x) dx", "int_0^{inf} exp(-x^2+ix) dx (using domain truncation)", "int_0^{inf} exp(-x) Ai(-x) dx (using domain truncation)", "int_0^pi x sin(x) / (1 + cos(x)^2) dx", "int_0^3 sin(0.001 + (1-x)^2)^(-3/2)) dx (slow convergence, use higher -eval)", "int_0^{inf} exp(-x) I_0(x/3)^3 dx (using domain truncation)", "int_0^{inf} exp(-x) I_0(x/15)^{15} dx (using domain truncation)", "int_{-1-i}^{-1+i} 1/sqrt(x) dx", "int_0^{inf} 1/gamma(x) dx (using domain truncation)", }; int main(int argc, char *argv[]) { acb_t s, t, a, b; mag_t tol; slong prec, goal; slong N; ulong k; int integral, ifrom, ito; int i, twice, havegoal, havetol; acb_calc_integrate_opt_t options; ifrom = ito = -1; for (i = 1; i < argc; i++) { if (!strcmp(argv[i], "-i")) { if (!strcmp(argv[i+1], "all")) { ifrom = 0; ito = NUM_INTEGRALS - 1; } else { ifrom = ito = atol(argv[i+1]); if (ito < 0 || ito >= NUM_INTEGRALS) flint_abort(); } } } if (ifrom == -1) { flint_printf("Compute integrals using acb_calc_integrate.\n"); flint_printf("Usage: integrals -i n [-prec p] [-tol eps] [-twice] [...]\n\n"); flint_printf("-i n - compute integral n (0 <= n <= %d), or \"-i all\"\n", NUM_INTEGRALS - 1); flint_printf("-prec p - precision in bits (default p = 64)\n"); flint_printf("-goal p - approximate relative accuracy goal (default p)\n"); flint_printf("-tol eps - approximate absolute error goal (default 2^-p)\n"); flint_printf("-twice - run twice (to see overhead of computing nodes)\n"); flint_printf("-heap - use heap for subinterval queue\n"); flint_printf("-verbose - show information\n"); flint_printf("-verbose2 - show more information\n"); flint_printf("-deg n - use quadrature degree up to n\n"); flint_printf("-eval n - limit number of function evaluations to n\n"); flint_printf("-depth n - limit subinterval queue size to n\n\n"); flint_printf("Implemented integrals:\n"); for (integral = 0; integral < NUM_INTEGRALS; integral++) flint_printf("I%d = %s\n", integral, descr[integral]); flint_printf("\n"); return 1; } acb_calc_integrate_opt_init(options); prec = 64; twice = 0; goal = 0; havetol = havegoal = 0; acb_init(a); acb_init(b); acb_init(s); acb_init(t); mag_init(tol); for (i = 1; i < argc; i++) { if (!strcmp(argv[i], "-prec")) { prec = atol(argv[i+1]); } else if (!strcmp(argv[i], "-twice")) { twice = 1; } else if (!strcmp(argv[i], "-goal")) { goal = atol(argv[i+1]); if (goal < 0) { flint_printf("expected goal >= 0\n"); return 1; } havegoal = 1; } else if (!strcmp(argv[i], "-tol")) { arb_t x; arb_init(x); arb_set_str(x, argv[i+1], 10); arb_get_mag(tol, x); arb_clear(x); havetol = 1; } else if (!strcmp(argv[i], "-deg")) { options->deg_limit = atol(argv[i+1]); } else if (!strcmp(argv[i], "-eval")) { options->eval_limit = atol(argv[i+1]); } else if (!strcmp(argv[i], "-depth")) { options->depth_limit = atol(argv[i+1]); } else if (!strcmp(argv[i], "-verbose")) { options->verbose = 1; } else if (!strcmp(argv[i], "-verbose2")) { options->verbose = 2; } else if (!strcmp(argv[i], "-heap")) { options->use_heap = 1; } } if (!havegoal) goal = prec; if (!havetol) mag_set_ui_2exp_si(tol, 1, -prec); for (integral = ifrom; integral <= ito; integral++) { flint_printf("I%d = %s ...\n", integral, descr[integral]); for (i = 0; i < 1 + twice; i++) { TIMEIT_ONCE_START switch (integral) { case 0: acb_set_d(a, 0); acb_set_d(b, 100); acb_calc_integrate(s, f_sin, NULL, a, b, goal, tol, options, prec); break; case 1: acb_set_d(a, 0); acb_set_d(b, 1); acb_calc_integrate(s, f_atanderiv, NULL, a, b, goal, tol, options, prec); acb_mul_2exp_si(s, s, 2); break; case 2: acb_set_d(a, 0); acb_one(b); acb_mul_2exp_si(b, b, goal); acb_calc_integrate(s, f_atanderiv, NULL, a, b, goal, tol, options, prec); arb_add_error_2exp_si(acb_realref(s), -goal); acb_mul_2exp_si(s, s, 1); break; case 3: acb_set_d(a, 0); acb_set_d(b, 1); acb_calc_integrate(s, f_circle, NULL, a, b, goal, tol, options, prec); acb_mul_2exp_si(s, s, 2); break; case 4: acb_set_d(a, 0); acb_set_d(b, 8); acb_calc_integrate(s, f_rump, NULL, a, b, goal, tol, options, prec); break; case 5: acb_set_d(a, 1); acb_set_d(b, 101); acb_calc_integrate(s, f_floor, NULL, a, b, goal, tol, options, prec); break; case 6: acb_set_d(a, 0); acb_set_d(b, 1); acb_calc_integrate(s, f_helfgott, NULL, a, b, goal, tol, options, prec); break; case 7: acb_zero(s); acb_set_d_d(a, -1.0, -1.0); acb_set_d_d(b, 2.0, -1.0); acb_calc_integrate(t, f_zeta, NULL, a, b, goal, tol, options, prec); acb_add(s, s, t, prec); acb_set_d_d(a, 2.0, -1.0); acb_set_d_d(b, 2.0, 1.0); acb_calc_integrate(t, f_zeta, NULL, a, b, goal, tol, options, prec); acb_add(s, s, t, prec); acb_set_d_d(a, 2.0, 1.0); acb_set_d_d(b, -1.0, 1.0); acb_calc_integrate(t, f_zeta, NULL, a, b, goal, tol, options, prec); acb_add(s, s, t, prec); acb_set_d_d(a, -1.0, 1.0); acb_set_d_d(b, -1.0, -1.0); acb_calc_integrate(t, f_zeta, NULL, a, b, goal, tol, options, prec); acb_add(s, s, t, prec); acb_const_pi(t, prec); acb_div(s, s, t, prec); acb_mul_2exp_si(s, s, -1); acb_div_onei(s, s); break; case 8: acb_set_d(a, 0); acb_set_d(b, 1); acb_calc_integrate(s, f_essing, NULL, a, b, goal, tol, options, prec); break; case 9: acb_set_d(a, 0); acb_set_d(b, 1); acb_calc_integrate(s, f_essing2, NULL, a, b, goal, tol, options, prec); break; case 10: acb_set_d(a, 0); acb_set_d(b, 10000); acb_calc_integrate(s, f_factorial1000, NULL, a, b, goal, tol, options, prec); break; case 11: acb_set_d_d(a, 1.0, 0.0); acb_set_d_d(b, 1.0, 1000.0); acb_calc_integrate(s, f_gamma, NULL, a, b, goal, tol, options, prec); break; case 12: acb_set_d(a, -10.0); acb_set_d(b, 10.0); acb_calc_integrate(s, f_sin_plus_small, NULL, a, b, goal, tol, options, prec); break; case 13: acb_set_d(a, -1020.0); acb_set_d(b, -1010.0); acb_calc_integrate(s, f_exp, NULL, a, b, goal, tol, options, prec); break; case 14: acb_set_d(a, 0); acb_set_d(b, ceil(sqrt(goal * 0.693147181) + 1.0)); acb_calc_integrate(s, f_gaussian, NULL, a, b, goal, tol, options, prec); acb_mul(b, b, b, prec); acb_neg(b, b); acb_exp(b, b, prec); arb_add_error(acb_realref(s), acb_realref(b)); break; case 15: acb_set_d(a, 0.0); acb_set_d(b, 1.0); acb_calc_integrate(s, f_spike, NULL, a, b, goal, tol, options, prec); break; case 16: acb_set_d(a, 0.0); acb_set_d(b, 8.0); acb_calc_integrate(s, f_monster, NULL, a, b, goal, tol, options, prec); break; case 17: acb_set_d(a, 0); acb_set_d(b, ceil(goal * 0.693147181 + 1.0)); acb_calc_integrate(s, f_sech, NULL, a, b, goal, tol, options, prec); acb_neg(b, b); acb_exp(b, b, prec); acb_mul_2exp_si(b, b, 1); arb_add_error(acb_realref(s), acb_realref(b)); break; case 18: acb_set_d(a, 0); acb_set_d(b, ceil(goal * 0.693147181 / 3.0 + 2.0)); acb_calc_integrate(s, f_sech3, NULL, a, b, goal, tol, options, prec); acb_neg(b, b); acb_mul_ui(b, b, 3, prec); acb_exp(b, b, prec); acb_mul_2exp_si(b, b, 3); acb_div_ui(b, b, 3, prec); arb_add_error(acb_realref(s), acb_realref(b)); break; case 19: if (goal < 0) abort(); /* error bound 2^-N (1+N) when truncated at 2^-N */ N = goal + FLINT_BIT_COUNT(goal); acb_one(a); acb_mul_2exp_si(a, a, -N); acb_one(b); acb_calc_integrate(s, f_log_div1p, NULL, a, b, goal, tol, options, prec); acb_set_ui(b, N + 1); acb_mul_2exp_si(b, b, -N); arb_add_error(acb_realref(s), acb_realref(b)); break; case 20: if (goal < 0) abort(); /* error bound (N+1) exp(-N) when truncated at N */ N = goal + FLINT_BIT_COUNT(goal); acb_zero(a); acb_set_ui(b, N); acb_calc_integrate(s, f_log_div1p_transformed, NULL, a, b, goal, tol, options, prec); acb_neg(b, b); acb_exp(b, b, prec); acb_mul_ui(b, b, N + 1, prec); arb_add_error(acb_realref(s), acb_realref(b)); break; case 21: acb_zero(s); N = 10; acb_set_d_d(a, 0.5, -0.5); acb_set_d_d(b, 0.5, 0.5); acb_calc_integrate(t, f_elliptic_p_laurent_n, &N, a, b, goal, tol, options, prec); acb_add(s, s, t, prec); acb_set_d_d(a, 0.5, 0.5); acb_set_d_d(b, -0.5, 0.5); acb_calc_integrate(t, f_elliptic_p_laurent_n, &N, a, b, goal, tol, options, prec); acb_add(s, s, t, prec); acb_set_d_d(a, -0.5, 0.5); acb_set_d_d(b, -0.5, -0.5); acb_calc_integrate(t, f_elliptic_p_laurent_n, &N, a, b, goal, tol, options, prec); acb_add(s, s, t, prec); acb_set_d_d(a, -0.5, -0.5); acb_set_d_d(b, 0.5, -0.5); acb_calc_integrate(t, f_elliptic_p_laurent_n, &N, a, b, goal, tol, options, prec); acb_add(s, s, t, prec); acb_const_pi(t, prec); acb_div(s, s, t, prec); acb_mul_2exp_si(s, s, -1); acb_div_onei(s, s); break; case 22: acb_zero(s); N = 1000; acb_set_d_d(a, 100.0, 0.0); acb_set_d_d(b, 100.0, N); acb_calc_integrate(t, f_zeta_frac, NULL, a, b, goal, tol, options, prec); acb_add(s, s, t, prec); acb_set_d_d(a, 100, N); acb_set_d_d(b, 0.5, N); acb_calc_integrate(t, f_zeta_frac, NULL, a, b, goal, tol, options, prec); acb_add(s, s, t, prec); acb_div_onei(s, s); arb_zero(acb_imagref(s)); acb_set_ui(t, N); acb_dirichlet_hardy_theta(t, t, NULL, NULL, 1, prec); acb_add(s, s, t, prec); acb_const_pi(t, prec); acb_div(s, s, t, prec); acb_add_ui(s, s, 1, prec); break; case 23: acb_set_d(a, 0.0); acb_set_d(b, 1000.0); acb_calc_integrate(s, f_lambertw, NULL, a, b, goal, tol, options, prec); break; case 24: acb_set_d(a, 0.0); acb_const_pi(b, prec); acb_calc_integrate(s, f_max_sin_cos, NULL, a, b, goal, tol, options, prec); break; case 25: acb_set_si(a, -1); acb_set_si(b, 1); acb_calc_integrate(s, f_erf_bent, NULL, a, b, goal, tol, options, prec); break; case 26: acb_set_si(a, -10); acb_set_si(b, 10); acb_calc_integrate(s, f_airy_ai, NULL, a, b, goal, tol, options, prec); break; case 27: acb_set_si(a, 0); acb_set_si(b, 10); acb_calc_integrate(s, f_horror, NULL, a, b, goal, tol, options, prec); break; case 28: acb_set_d_d(a, -1, -1); acb_set_d_d(b, -1, 1); acb_calc_integrate(s, f_sqrt, NULL, a, b, goal, tol, options, prec); break; case 29: acb_set_d(a, 0); acb_set_d(b, ceil(sqrt(goal * 0.693147181) + 1.0)); acb_calc_integrate(s, f_gaussian_twist, NULL, a, b, goal, tol, options, prec); acb_mul(b, b, b, prec); acb_neg(b, b); acb_exp(b, b, prec); arb_add_error(acb_realref(s), acb_realref(b)); arb_add_error(acb_imagref(s), acb_realref(b)); break; case 30: acb_set_d(a, 0); acb_set_d(b, ceil(goal * 0.693147181 + 1.0)); acb_calc_integrate(s, f_exp_airy, NULL, a, b, goal, tol, options, prec); acb_neg(b, b); acb_exp(b, b, prec); acb_mul_2exp_si(b, b, 1); arb_add_error(acb_realref(s), acb_realref(b)); break; case 31: acb_zero(a); acb_const_pi(b, prec); acb_calc_integrate(s, f_sin_cos_frac, NULL, a, b, goal, tol, options, prec); break; case 32: acb_zero(a); acb_set_ui(b, 3); acb_calc_integrate(s, f_sin_near_essing, NULL, a, b, goal, tol, options, prec); break; case 33: acb_zero(a); acb_zero(b); k = 3; scaled_bessel_select_N(acb_realref(b), k, prec); acb_calc_integrate(s, f_scaled_bessel, &k, a, b, goal, tol, options, prec); scaled_bessel_tail_bound(acb_realref(a), k, acb_realref(b), prec); arb_add_error(acb_realref(s), acb_realref(a)); break; case 34: acb_zero(a); acb_zero(b); k = 15; scaled_bessel_select_N(acb_realref(b), k, prec); acb_calc_integrate(s, f_scaled_bessel, &k, a, b, goal, tol, options, prec); scaled_bessel_tail_bound(acb_realref(a), k, acb_realref(b), prec); arb_add_error(acb_realref(s), acb_realref(a)); break; case 35: acb_set_d_d(a, -1, -1); acb_set_d_d(b, -1, 1); acb_calc_integrate(s, f_rsqrt, NULL, a, b, goal, tol, options, prec); case 36: if (goal < 0) abort(); acb_zero(a); acb_set_ui(b, 4 + (goal + 1) / 2); acb_calc_integrate(s, f_rgamma, NULL, a, b, goal, tol, options, prec); arb_add_error_2exp_si(acb_realref(s), -goal); break; default: abort(); } TIMEIT_ONCE_STOP } flint_printf("I%d = ", integral); acb_printn(s, 3.333 * prec, 0); flint_printf("\n\n"); } acb_clear(a); acb_clear(b); acb_clear(s); acb_clear(t); mag_clear(tol); flint_cleanup(); return 0; }