/* This file is public domain. Author: Fredrik Johansson. */ #include #include #include "acb.h" #include "arb_fmpz_poly.h" #include "flint/arith.h" #include "flint/profiler.h" int main(int argc, char *argv[]) { fmpz_poly_t f, g; fmpz_poly_factor_t fac; fmpz_t t; acb_ptr roots; slong compd, printd, i, j, deg; int flags; if (argc < 2) { flint_printf("poly_roots [-refine d] [-print d] \n\n"); flint_printf("Isolates all the complex roots of a polynomial with integer coefficients.\n\n"); flint_printf("If -refine d is passed, the roots are refined to a relative tolerance\n"); flint_printf("better than 10^(-d). By default, the roots are only computed to sufficient\n"); flint_printf("accuracy to isolate them. The refinement is not currently done efficiently.\n\n"); flint_printf("If -print d is passed, the computed roots are printed to d decimals.\n"); flint_printf("By default, the roots are not printed.\n\n"); flint_printf("The polynomial can be specified by passing the following as :\n\n"); flint_printf("a Easy polynomial 1 + 2x + ... + (n+1)x^n\n"); flint_printf("t Chebyshev polynomial T_n\n"); flint_printf("u Chebyshev polynomial U_n\n"); flint_printf("p Legendre polynomial P_n\n"); flint_printf("c Cyclotomic polynomial Phi_n\n"); flint_printf("s Swinnerton-Dyer polynomial S_n\n"); flint_printf("b Bernoulli polynomial B_n\n"); flint_printf("w Wilkinson polynomial W_n\n"); flint_printf("e Taylor series of exp(x) truncated to degree n\n"); flint_printf("m The Mignotte-like polynomial x^n + (100x+1)^m, n > m\n"); flint_printf("coeffs c0 + c1 x + ... + cn x^n\n\n"); flint_printf("Concatenate to multiply polynomials, e.g.: p 5 t 6 coeffs 1 2 3\n"); flint_printf("for P_5(x)*T_6(x)*(1+2x+3x^2)\n\n"); return 1; } compd = 0; printd = 0; flags = ARB_FMPZ_POLY_ROOTS_VERBOSE; fmpz_poly_init(f); fmpz_poly_init(g); fmpz_init(t); fmpz_poly_one(f); for (i = 1; i < argc; i++) { if (!strcmp(argv[i], "-refine")) { compd = atol(argv[i+1]); i++; } else if (!strcmp(argv[i], "-print")) { printd = atol(argv[i+1]); i++; } else if (!strcmp(argv[i], "a")) { slong n = atol(argv[i+1]); fmpz_poly_zero(g); for (j = 0; j <= n; j++) fmpz_poly_set_coeff_ui(g, j, j+1); fmpz_poly_mul(f, f, g); i++; } else if (!strcmp(argv[i], "t")) { arith_chebyshev_t_polynomial(g, atol(argv[i+1])); fmpz_poly_mul(f, f, g); i++; } else if (!strcmp(argv[i], "u")) { arith_chebyshev_u_polynomial(g, atol(argv[i+1])); fmpz_poly_mul(f, f, g); i++; } else if (!strcmp(argv[i], "p")) { fmpq_poly_t h; fmpq_poly_init(h); arith_legendre_polynomial(h, atol(argv[i+1])); fmpq_poly_get_numerator(g, h); fmpz_poly_mul(f, f, g); fmpq_poly_clear(h); i++; } else if (!strcmp(argv[i], "c")) { arith_cyclotomic_polynomial(g, atol(argv[i+1])); fmpz_poly_mul(f, f, g); i++; } else if (!strcmp(argv[i], "s")) { arith_swinnerton_dyer_polynomial(g, atol(argv[i+1])); fmpz_poly_mul(f, f, g); i++; } else if (!strcmp(argv[i], "b")) { fmpq_poly_t h; fmpq_poly_init(h); arith_bernoulli_polynomial(h, atol(argv[i+1])); fmpq_poly_get_numerator(g, h); fmpz_poly_mul(f, f, g); fmpq_poly_clear(h); i++; } else if (!strcmp(argv[i], "w")) { slong n = atol(argv[i+1]); fmpz_poly_zero(g); fmpz_poly_fit_length(g, n+2); arith_stirling_number_1_vec(g->coeffs, n+1, n+2); _fmpz_poly_set_length(g, n+2); fmpz_poly_shift_right(g, g, 1); fmpz_poly_mul(f, f, g); i++; } else if (!strcmp(argv[i], "e")) { fmpq_poly_t h; fmpq_poly_init(h); fmpq_poly_set_coeff_si(h, 0, 0); fmpq_poly_set_coeff_si(h, 1, 1); fmpq_poly_exp_series(h, h, atol(argv[i+1]) + 1); fmpq_poly_get_numerator(g, h); fmpz_poly_mul(f, f, g); fmpq_poly_clear(h); i++; } else if (!strcmp(argv[i], "m")) { fmpz_poly_zero(g); fmpz_poly_set_coeff_ui(g, 0, 1); fmpz_poly_set_coeff_ui(g, 1, 100); fmpz_poly_pow(g, g, atol(argv[i+2])); fmpz_poly_set_coeff_ui(g, atol(argv[i+1]), 1); fmpz_poly_mul(f, f, g); i += 2; } else if (!strcmp(argv[i], "coeffs")) { fmpz_poly_zero(g); i++; j = 0; while (i < argc) { if (fmpz_set_str(t, argv[i], 10) != 0) { i--; break; } fmpz_poly_set_coeff_fmpz(g, j, t); i++; j++; } fmpz_poly_mul(f, f, g); } } fmpz_poly_factor_init(fac); flint_printf("computing squarefree factorization...\n"); TIMEIT_ONCE_START fmpz_poly_factor_squarefree(fac, f); TIMEIT_ONCE_STOP TIMEIT_ONCE_START for (i = 0; i < fac->num; i++) { deg = fmpz_poly_degree(fac->p + i); flint_printf("%wd roots with multiplicity %wd\n", deg, fac->exp[i]); roots = _acb_vec_init(deg); arb_fmpz_poly_complex_roots(roots, fac->p + i, flags, compd * 3.32193 + 2); if (printd) { for (j = 0; j < deg; j++) { acb_printn(roots + j, printd, 0); flint_printf("\n"); } } _acb_vec_clear(roots, deg); } TIMEIT_ONCE_STOP fmpz_poly_factor_clear(fac); fmpz_poly_clear(f); fmpz_poly_clear(g); fmpz_clear(t); flint_cleanup(); return EXIT_SUCCESS; }