/* This file is public domain. Author: Fredrik Johansson. */ #include "acb_calc.h" #include "flint/profiler.h" int sinx(acb_ptr out, const acb_t inp, void * params, slong order, slong prec) { int xlen = FLINT_MIN(2, order); acb_set(out, inp); if (xlen > 1) acb_one(out + 1); _acb_poly_sin_series(out, out, xlen, order, prec); return 0; } int elliptic(acb_ptr out, const acb_t inp, void * params, slong order, slong prec) { acb_ptr t; t = _acb_vec_init(order); acb_set(t, inp); if (order > 1) acb_one(t + 1); _acb_poly_sin_series(t, t, FLINT_MIN(2, order), order, prec); _acb_poly_mullow(out, t, order, t, order, order, prec); _acb_vec_scalar_mul_2exp_si(t, out, order, -1); acb_sub_ui(t, t, 1, prec); _acb_vec_neg(t, t, order); _acb_poly_rsqrt_series(out, t, order, order, prec); _acb_vec_clear(t, order); return 0; } int bessel(acb_ptr out, const acb_t inp, void * params, slong order, slong prec) { acb_ptr t; acb_t z; ulong n; t = _acb_vec_init(order); acb_init(z); acb_set(t, inp); if (order > 1) acb_one(t + 1); n = 10; arb_set_si(acb_realref(z), 20); arb_set_si(acb_imagref(z), 10); /* z sin(t) */ _acb_poly_sin_series(out, t, FLINT_MIN(2, order), order, prec); _acb_vec_scalar_mul(out, out, order, z, prec); /* t n */ _acb_vec_scalar_mul_ui(t, t, FLINT_MIN(2, order), n, prec); _acb_poly_sub(out, t, FLINT_MIN(2, order), out, order, prec); _acb_poly_cos_series(out, out, order, order, prec); _acb_vec_clear(t, order); acb_clear(z); return 0; } int main(int argc, char *argv[]) { acb_t r, s, a, b; arf_t inr, outr; slong digits, prec; if (argc < 2) { flint_printf("integrals d\n"); flint_printf("compute integrals using d decimal digits of precision\n"); return 1; } acb_init(r); acb_init(s); acb_init(a); acb_init(b); arf_init(inr); arf_init(outr); arb_calc_verbose = 0; digits = atol(argv[1]); prec = digits * 3.32193; flint_printf("Digits: %wd\n", digits); flint_printf("----------------------------------------------------------------\n"); flint_printf("Integral of sin(t) from 0 to 100.\n"); arf_set_d(inr, 0.125); arf_set_d(outr, 1.0); TIMEIT_ONCE_START acb_set_si(a, 0); acb_set_si(b, 100); acb_calc_integrate_taylor(r, sinx, NULL, a, b, inr, outr, prec, 1.1 * prec); flint_printf("RESULT:\n"); acb_printn(r, digits, 0); flint_printf("\n"); TIMEIT_ONCE_STOP flint_printf("----------------------------------------------------------------\n"); flint_printf("Elliptic integral F(phi, m) = integral of 1/sqrt(1 - m*sin(t)^2)\n"); flint_printf("from 0 to phi, with phi = 6+6i, m = 1/2. Integration path\n"); flint_printf("0 -> 6 -> 6+6i.\n"); arf_set_d(inr, 0.2); arf_set_d(outr, 0.5); TIMEIT_ONCE_START acb_set_si(a, 0); acb_set_si(b, 6); acb_calc_integrate_taylor(r, elliptic, NULL, a, b, inr, outr, prec, 1.1 * prec); acb_set_si(a, 6); arb_set_si(acb_realref(b), 6); arb_set_si(acb_imagref(b), 6); acb_calc_integrate_taylor(s, elliptic, NULL, a, b, inr, outr, prec, 1.1 * prec); acb_add(r, r, s, prec); flint_printf("RESULT:\n"); acb_printn(r, digits, 0); flint_printf("\n"); TIMEIT_ONCE_STOP flint_printf("----------------------------------------------------------------\n"); flint_printf("Bessel function J_n(z) = (1/pi) * integral of cos(t*n - z*sin(t))\n"); flint_printf("from 0 to pi. With n = 10, z = 20 + 10i.\n"); arf_set_d(inr, 0.1); arf_set_d(outr, 0.5); TIMEIT_ONCE_START acb_set_si(a, 0); acb_const_pi(b, 3 * prec); acb_calc_integrate_taylor(r, bessel, NULL, a, b, inr, outr, prec, 3 * prec); acb_div(r, r, b, prec); flint_printf("RESULT:\n"); acb_printn(r, digits, 0); flint_printf("\n"); TIMEIT_ONCE_STOP acb_clear(r); acb_clear(s); acb_clear(a); acb_clear(b); arf_clear(inr); arf_clear(outr); flint_cleanup(); return 0; }