/* Copyright (C) 2012 Fredrik Johansson This file is part of Arb. Arb is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include #include "flint/double_extras.h" #include "hypgeom.h" slong hypgeom_root_bound(const mag_t z, int r) { if (r == 0) { return 0; } else { arf_t t; slong v; arf_init(t); arf_set_mag(t, z); arf_root(t, t, r, MAG_BITS, ARF_RND_UP); arf_add_ui(t, t, 1, MAG_BITS, ARF_RND_UP); v = arf_get_si(t, ARF_RND_UP); arf_clear(t); return v; } } /* Given T(K), compute bound for T(n) z^n. We need to multiply by z^n * 1/rf(K+1,m)^r * (rf(K+1,m)/rf(K+1-A,m)) * (rf(K+1-B,m)/rf(K+1-2B,m)) where m = n - K. This is equal to z^n * (K+A)! (K-2B)! (K-B+m)! ----------------------- * ((K+m)! / K!)^(1-r) (K-B)! (K-A+m)! (K-2B+m)! */ void hypgeom_term_bound(mag_t Tn, const mag_t TK, slong K, slong A, slong B, int r, const mag_t z, slong n) { mag_t t, u, num; slong m; mag_init(t); mag_init(u); mag_init(num); m = n - K; if (m < 0) { flint_printf("hypgeom term bound\n"); flint_abort(); } /* TK * z^n */ mag_pow_ui(t, z, n); mag_mul(num, TK, t); /* numerator: (K+A)! (K-2B)! (K-B+m)! */ mag_fac_ui(t, K+A); mag_mul(num, num, t); mag_fac_ui(t, K-2*B); mag_mul(num, num, t); mag_fac_ui(t, K-B+m); mag_mul(num, num, t); /* denominator: (K-B)! (K-A+m)! (K-2B+m)! */ mag_rfac_ui(t, K-B); mag_mul(num, num, t); mag_rfac_ui(t, K-A+m); mag_mul(num, num, t); mag_rfac_ui(t, K-2*B+m); mag_mul(num, num, t); /* ((K+m)! / K!)^(1-r) */ if (r == 0) { mag_fac_ui(t, K+m); mag_mul(num, num, t); mag_rfac_ui(t, K); mag_mul(num, num, t); } else if (r != 1) { mag_fac_ui(t, K); mag_rfac_ui(u, K+m); mag_mul(t, t, u); mag_pow_ui(t, t, r-1); mag_mul(num, num, t); } mag_set(Tn, num); mag_clear(t); mag_clear(u); mag_clear(num); } slong hypgeom_bound(mag_t error, int r, slong A, slong B, slong K, const mag_t TK, const mag_t z, slong tol_2exp) { mag_t Tn, t, u, one, tol, num, den; slong n, m; mag_init(Tn); mag_init(t); mag_init(u); mag_init(one); mag_init(tol); mag_init(num); mag_init(den); mag_one(one); mag_set_ui_2exp_si(tol, UWORD(1), -tol_2exp); /* approximate number of needed terms */ n = hypgeom_estimate_terms(z, r, tol_2exp); /* required for 1 + O(1/k) part to be decreasing */ n = FLINT_MAX(n, K + 1); /* required for z^k / (k!)^r to be decreasing */ m = hypgeom_root_bound(z, r); n = FLINT_MAX(n, m); /* We now have |R(k)| <= G(k) where G(k) is monotonically decreasing, and can bound the tail using a geometric series as soon as soon as G(k) < 1. */ /* bound T(n-1) */ hypgeom_term_bound(Tn, TK, K, A, B, r, z, n-1); while (1) { /* bound R(n) */ mag_mul_ui(num, z, n); mag_mul_ui(num, num, n - B); mag_set_ui_lower(den, n - A); mag_mul_ui_lower(den, den, n - 2*B); if (r != 0) { mag_set_ui_lower(u, n); mag_pow_ui_lower(u, u, r); mag_mul_lower(den, den, u); } mag_div(t, num, den); /* multiply bound for T(n-1) by bound for R(n) to bound T(n) */ mag_mul(Tn, Tn, t); /* geometric series termination check */ /* u = max(1-t, 0), rounding down [lower bound] */ mag_sub_lower(u, one, t); if (!mag_is_zero(u)) { mag_div(u, Tn, u); if (mag_cmp(u, tol) < 0) { mag_set(error, u); break; } } /* move on to next term */ n++; } mag_clear(Tn); mag_clear(t); mag_clear(u); mag_clear(one); mag_clear(tol); mag_clear(num); mag_clear(den); return n; }