/*
Copyright (C) 2012 Fredrik Johansson
This file is part of Arb.
Arb is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version. See .
*/
#include
#include "flint/double_extras.h"
#include "hypgeom.h"
slong
hypgeom_root_bound(const mag_t z, int r)
{
if (r == 0)
{
return 0;
}
else
{
arf_t t;
slong v;
arf_init(t);
arf_set_mag(t, z);
arf_root(t, t, r, MAG_BITS, ARF_RND_UP);
arf_add_ui(t, t, 1, MAG_BITS, ARF_RND_UP);
v = arf_get_si(t, ARF_RND_UP);
arf_clear(t);
return v;
}
}
/*
Given T(K), compute bound for T(n) z^n.
We need to multiply by
z^n * 1/rf(K+1,m)^r * (rf(K+1,m)/rf(K+1-A,m)) * (rf(K+1-B,m)/rf(K+1-2B,m))
where m = n - K. This is equal to
z^n *
(K+A)! (K-2B)! (K-B+m)!
----------------------- * ((K+m)! / K!)^(1-r)
(K-B)! (K-A+m)! (K-2B+m)!
*/
void
hypgeom_term_bound(mag_t Tn, const mag_t TK, slong K, slong A, slong B, int r, const mag_t z, slong n)
{
mag_t t, u, num;
slong m;
mag_init(t);
mag_init(u);
mag_init(num);
m = n - K;
if (m < 0)
{
flint_printf("hypgeom term bound\n");
flint_abort();
}
/* TK * z^n */
mag_pow_ui(t, z, n);
mag_mul(num, TK, t);
/* numerator: (K+A)! (K-2B)! (K-B+m)! */
mag_fac_ui(t, K+A);
mag_mul(num, num, t);
mag_fac_ui(t, K-2*B);
mag_mul(num, num, t);
mag_fac_ui(t, K-B+m);
mag_mul(num, num, t);
/* denominator: (K-B)! (K-A+m)! (K-2B+m)! */
mag_rfac_ui(t, K-B);
mag_mul(num, num, t);
mag_rfac_ui(t, K-A+m);
mag_mul(num, num, t);
mag_rfac_ui(t, K-2*B+m);
mag_mul(num, num, t);
/* ((K+m)! / K!)^(1-r) */
if (r == 0)
{
mag_fac_ui(t, K+m);
mag_mul(num, num, t);
mag_rfac_ui(t, K);
mag_mul(num, num, t);
}
else if (r != 1)
{
mag_fac_ui(t, K);
mag_rfac_ui(u, K+m);
mag_mul(t, t, u);
mag_pow_ui(t, t, r-1);
mag_mul(num, num, t);
}
mag_set(Tn, num);
mag_clear(t);
mag_clear(u);
mag_clear(num);
}
slong
hypgeom_bound(mag_t error, int r,
slong A, slong B, slong K, const mag_t TK, const mag_t z, slong tol_2exp)
{
mag_t Tn, t, u, one, tol, num, den;
slong n, m;
mag_init(Tn);
mag_init(t);
mag_init(u);
mag_init(one);
mag_init(tol);
mag_init(num);
mag_init(den);
mag_one(one);
mag_set_ui_2exp_si(tol, UWORD(1), -tol_2exp);
/* approximate number of needed terms */
n = hypgeom_estimate_terms(z, r, tol_2exp);
/* required for 1 + O(1/k) part to be decreasing */
n = FLINT_MAX(n, K + 1);
/* required for z^k / (k!)^r to be decreasing */
m = hypgeom_root_bound(z, r);
n = FLINT_MAX(n, m);
/* We now have |R(k)| <= G(k) where G(k) is monotonically decreasing,
and can bound the tail using a geometric series as soon
as soon as G(k) < 1. */
/* bound T(n-1) */
hypgeom_term_bound(Tn, TK, K, A, B, r, z, n-1);
while (1)
{
/* bound R(n) */
mag_mul_ui(num, z, n);
mag_mul_ui(num, num, n - B);
mag_set_ui_lower(den, n - A);
mag_mul_ui_lower(den, den, n - 2*B);
if (r != 0)
{
mag_set_ui_lower(u, n);
mag_pow_ui_lower(u, u, r);
mag_mul_lower(den, den, u);
}
mag_div(t, num, den);
/* multiply bound for T(n-1) by bound for R(n) to bound T(n) */
mag_mul(Tn, Tn, t);
/* geometric series termination check */
/* u = max(1-t, 0), rounding down [lower bound] */
mag_sub_lower(u, one, t);
if (!mag_is_zero(u))
{
mag_div(u, Tn, u);
if (mag_cmp(u, tol) < 0)
{
mag_set(error, u);
break;
}
}
/* move on to next term */
n++;
}
mag_clear(Tn);
mag_clear(t);
mag_clear(u);
mag_clear(one);
mag_clear(tol);
mag_clear(num);
mag_clear(den);
return n;
}