/* Copyright (C) 2012 Fredrik Johansson This file is part of Arb. Arb is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include #include "hypgeom.h" /* Compute a pure ratio P2(k)/Q2(k) for the term A(k)/B(k) * [P(1)P(2)...P(k)] / [Q(1)Q(2)...Q(k)] */ void hypgeom_standardize(fmpz_poly_t P2, fmpz_poly_t Q2, const fmpz_poly_t A, const fmpz_poly_t B, const fmpz_poly_t P, const fmpz_poly_t Q) { fmpz_t s; fmpz_poly_t T; fmpz_init(s); fmpz_poly_init(T); fmpz_set_si(s, -WORD(1)); /* P = A * B(k-1) * P */ fmpz_poly_taylor_shift(T, B, s); fmpz_poly_mul(P2, A, T); fmpz_poly_mul(P2, P2, P); /* Q = B * A(k-1) * Q */ fmpz_poly_taylor_shift(T, A, s); fmpz_poly_mul(Q2, B, T); fmpz_poly_mul(Q2, Q2, Q); fmpz_clear(s); fmpz_poly_clear(T); } /* quotient of absolute value, rounded up */ static __inline__ void fmpz_cdiv_abs_q(fmpz_t q, const fmpz_t x, const fmpz_t y) { if (fmpz_sgn(x) == fmpz_sgn(y)) { fmpz_cdiv_q(q, x, y); } else { fmpz_fdiv_q(q, x, y); fmpz_neg(q, q); } } slong hypgeom_root_norm(const fmpz_poly_t P) { slong res, i, p; fmpz_t t, A; fmpz_init(A); fmpz_init(t); p = fmpz_poly_degree(P); fmpz_zero(A); for (i = 1; i <= p; i++) { fmpz_cdiv_abs_q(t, P->coeffs + p - i, P->coeffs + p); fmpz_root(t, t, i); fmpz_add_ui(t, t, 1); if (fmpz_cmp(t, A) > 0) fmpz_swap(t, A); } if (!fmpz_fits_si(A)) flint_abort(); res = fmpz_get_si(A); fmpz_clear(A); fmpz_clear(t); return res; } static __inline__ void fmpz_poly_evaluate_si(fmpz_t y, const fmpz_poly_t poly, slong x) { fmpz_set_si(y, x); fmpz_poly_evaluate_fmpz(y, poly, y); } void _hypgeom_precompute(hypgeom_t hyp, const fmpz_poly_t P, const fmpz_poly_t Q) { slong k; fmpz_t t; fmpz_init(t); hyp->r = fmpz_poly_degree(Q) - fmpz_poly_degree(P); hyp->boundC = hypgeom_root_norm(P); hyp->boundD = hypgeom_root_norm(Q); hyp->boundK = 1 + FLINT_MAX(hyp->boundC, 2 * hyp->boundD); mag_one(hyp->MK); for (k = 1; k <= hyp->boundK; k++) { fmpz_poly_evaluate_si(t, P, k); mag_mul_fmpz(hyp->MK, hyp->MK, t); fmpz_poly_evaluate_si(t, Q, k); mag_div_fmpz(hyp->MK, hyp->MK, t); } fmpz_clear(t); } void hypgeom_precompute(hypgeom_t hyp) { if (fmpz_poly_is_one(hyp->A) && fmpz_poly_is_one(hyp->B)) { _hypgeom_precompute(hyp, hyp->P, hyp->Q); } else { fmpz_poly_t P2, Q2; fmpz_poly_init(P2); fmpz_poly_init(Q2); hypgeom_standardize(P2, Q2, hyp->A, hyp->B, hyp->P, hyp->Q); _hypgeom_precompute(hyp, P2, Q2); { fmpz_t t; fmpz_init(t); fmpz_poly_evaluate_si(t, hyp->A, 0); mag_mul_fmpz(hyp->MK, hyp->MK, t); fmpz_poly_evaluate_si(t, hyp->B, 0); mag_div_fmpz(hyp->MK, hyp->MK, t); fmpz_clear(t); } fmpz_poly_clear(P2); fmpz_poly_clear(Q2); } }