/*
Copyright (C) 2012 Fredrik Johansson
This file is part of Arb.
Arb is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version. See .
*/
#include
#include "hypgeom.h"
/* Compute a pure ratio P2(k)/Q2(k) for the term
A(k)/B(k) * [P(1)P(2)...P(k)] / [Q(1)Q(2)...Q(k)] */
void
hypgeom_standardize(fmpz_poly_t P2, fmpz_poly_t Q2,
const fmpz_poly_t A, const fmpz_poly_t B,
const fmpz_poly_t P, const fmpz_poly_t Q)
{
fmpz_t s;
fmpz_poly_t T;
fmpz_init(s);
fmpz_poly_init(T);
fmpz_set_si(s, -WORD(1));
/* P = A * B(k-1) * P */
fmpz_poly_taylor_shift(T, B, s);
fmpz_poly_mul(P2, A, T);
fmpz_poly_mul(P2, P2, P);
/* Q = B * A(k-1) * Q */
fmpz_poly_taylor_shift(T, A, s);
fmpz_poly_mul(Q2, B, T);
fmpz_poly_mul(Q2, Q2, Q);
fmpz_clear(s);
fmpz_poly_clear(T);
}
/* quotient of absolute value, rounded up */
static __inline__ void
fmpz_cdiv_abs_q(fmpz_t q, const fmpz_t x, const fmpz_t y)
{
if (fmpz_sgn(x) == fmpz_sgn(y))
{
fmpz_cdiv_q(q, x, y);
}
else
{
fmpz_fdiv_q(q, x, y);
fmpz_neg(q, q);
}
}
slong
hypgeom_root_norm(const fmpz_poly_t P)
{
slong res, i, p;
fmpz_t t, A;
fmpz_init(A);
fmpz_init(t);
p = fmpz_poly_degree(P);
fmpz_zero(A);
for (i = 1; i <= p; i++)
{
fmpz_cdiv_abs_q(t, P->coeffs + p - i, P->coeffs + p);
fmpz_root(t, t, i);
fmpz_add_ui(t, t, 1);
if (fmpz_cmp(t, A) > 0)
fmpz_swap(t, A);
}
if (!fmpz_fits_si(A))
flint_abort();
res = fmpz_get_si(A);
fmpz_clear(A);
fmpz_clear(t);
return res;
}
static __inline__ void
fmpz_poly_evaluate_si(fmpz_t y, const fmpz_poly_t poly, slong x)
{
fmpz_set_si(y, x);
fmpz_poly_evaluate_fmpz(y, poly, y);
}
void
_hypgeom_precompute(hypgeom_t hyp, const fmpz_poly_t P, const fmpz_poly_t Q)
{
slong k;
fmpz_t t;
fmpz_init(t);
hyp->r = fmpz_poly_degree(Q) - fmpz_poly_degree(P);
hyp->boundC = hypgeom_root_norm(P);
hyp->boundD = hypgeom_root_norm(Q);
hyp->boundK = 1 + FLINT_MAX(hyp->boundC, 2 * hyp->boundD);
mag_one(hyp->MK);
for (k = 1; k <= hyp->boundK; k++)
{
fmpz_poly_evaluate_si(t, P, k);
mag_mul_fmpz(hyp->MK, hyp->MK, t);
fmpz_poly_evaluate_si(t, Q, k);
mag_div_fmpz(hyp->MK, hyp->MK, t);
}
fmpz_clear(t);
}
void
hypgeom_precompute(hypgeom_t hyp)
{
if (fmpz_poly_is_one(hyp->A) && fmpz_poly_is_one(hyp->B))
{
_hypgeom_precompute(hyp, hyp->P, hyp->Q);
}
else
{
fmpz_poly_t P2, Q2;
fmpz_poly_init(P2);
fmpz_poly_init(Q2);
hypgeom_standardize(P2, Q2, hyp->A, hyp->B, hyp->P, hyp->Q);
_hypgeom_precompute(hyp, P2, Q2);
{
fmpz_t t;
fmpz_init(t);
fmpz_poly_evaluate_si(t, hyp->A, 0);
mag_mul_fmpz(hyp->MK, hyp->MK, t);
fmpz_poly_evaluate_si(t, hyp->B, 0);
mag_div_fmpz(hyp->MK, hyp->MK, t);
fmpz_clear(t);
}
fmpz_poly_clear(P2);
fmpz_poly_clear(Q2);
}
}