/* Copyright (C) 2012 Fredrik Johansson This file is part of Arb. Arb is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include "hypgeom.h" static __inline__ void fmpz_poly_evaluate_si(fmpz_t y, const fmpz_poly_t poly, slong x) { fmpz_set_si(y, x); fmpz_poly_evaluate_fmpz(y, poly, y); } static void bsplit_recursive_fmpz(fmpz_t P, fmpz_t Q, fmpz_t B, fmpz_t T, const hypgeom_t hyp, slong a, slong b, int cont) { if (b - a == 1) { if (a == 0) { fmpz_one(P); fmpz_one(Q); } else { fmpz_poly_evaluate_si(P, hyp->P, a); fmpz_poly_evaluate_si(Q, hyp->Q, a); } fmpz_poly_evaluate_si(B, hyp->B, a); fmpz_poly_evaluate_si(T, hyp->A, a); fmpz_mul(T, T, P); } else { slong m; fmpz_t P2, Q2, B2, T2; m = (a + b) / 2; fmpz_init(P2); fmpz_init(Q2); fmpz_init(B2); fmpz_init(T2); bsplit_recursive_fmpz(P, Q, B, T, hyp, a, m, 1); bsplit_recursive_fmpz(P2, Q2, B2, T2, hyp, m, b, 1); if (fmpz_is_one(B) && fmpz_is_one(B2)) { fmpz_mul(T, T, Q2); fmpz_addmul(T, P, T2); } else { fmpz_mul(T, T, B2); fmpz_mul(T, T, Q2); fmpz_mul(T2, T2, B); fmpz_addmul(T, P, T2); } fmpz_mul(B, B, B2); fmpz_mul(Q, Q, Q2); if (cont) fmpz_mul(P, P, P2); fmpz_clear(P2); fmpz_clear(Q2); fmpz_clear(B2); fmpz_clear(T2); } } static void bsplit_recursive_arb(arb_t P, arb_t Q, arb_t B, arb_t T, const hypgeom_t hyp, slong a, slong b, int cont, slong prec) { if (b - a < 4) { fmpz_t PP, QQ, BB, TT; fmpz_init(PP); fmpz_init(QQ); fmpz_init(BB); fmpz_init(TT); bsplit_recursive_fmpz(PP, QQ, BB, TT, hyp, a, b, cont); arb_set_fmpz(P, PP); arb_set_fmpz(Q, QQ); arb_set_fmpz(B, BB); arb_set_fmpz(T, TT); fmpz_clear(PP); fmpz_clear(QQ); fmpz_clear(BB); fmpz_clear(TT); } else { slong m; arb_t P2, Q2, B2, T2; m = (a + b) / 2; arb_init(P2); arb_init(Q2); arb_init(B2); arb_init(T2); bsplit_recursive_arb(P, Q, B, T, hyp, a, m, 1, prec); bsplit_recursive_arb(P2, Q2, B2, T2, hyp, m, b, 1, prec); if (arb_is_one(B) && arb_is_one(B2)) { arb_mul(T, T, Q2, prec); arb_addmul(T, P, T2, prec); } else { arb_mul(T, T, B2, prec); arb_mul(T, T, Q2, prec); arb_mul(T2, T2, B, prec); arb_addmul(T, P, T2, prec); } arb_mul(B, B, B2, prec); arb_mul(Q, Q, Q2, prec); if (cont) arb_mul(P, P, P2, prec); arb_clear(P2); arb_clear(Q2); arb_clear(B2); arb_clear(T2); } } void arb_hypgeom_sum(arb_t P, arb_t Q, const hypgeom_t hyp, slong n, slong prec) { if (n < 1) { arb_zero(P); arb_one(Q); } else { arb_t B, T; arb_init(B); arb_init(T); bsplit_recursive_arb(P, Q, B, T, hyp, 0, n, 0, prec); if (!arb_is_one(B)) arb_mul(Q, Q, B, prec); arb_swap(P, T); arb_clear(B); arb_clear(T); } } void arb_hypgeom_infsum(arb_t P, arb_t Q, hypgeom_t hyp, slong target_prec, slong prec) { mag_t err, z; slong n; mag_init(err); mag_init(z); mag_set_fmpz(z, hyp->P->coeffs + hyp->P->length - 1); mag_div_fmpz(z, z, hyp->Q->coeffs + hyp->Q->length - 1); if (!hyp->have_precomputed) { hypgeom_precompute(hyp); hyp->have_precomputed = 1; } n = hypgeom_bound(err, hyp->r, hyp->boundC, hyp->boundD, hyp->boundK, hyp->MK, z, target_prec); arb_hypgeom_sum(P, Q, hyp, n, prec); if (arf_sgn(arb_midref(Q)) < 0) { arb_neg(P, P); arb_neg(Q, Q); } /* We have p/q = s + err i.e. (p + q*err)/q = s */ { mag_t u; mag_init(u); arb_get_mag(u, Q); mag_mul(u, u, err); mag_add(arb_radref(P), arb_radref(P), u); mag_clear(u); } mag_clear(z); mag_clear(err); }