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Abstract
The  Kaggle  ARC_AGI  prize  was  launched  to  encourage
participation in creating computer systems to solve human
Intelligence tests. This challenge is unlikely to be solved by
simple memorisation of previous results, or by brute force
methods. In the 5 years since the  challenge was formulated
no  solution  has  approached  human  level  performance.
Francois Chollet [1] suggests the solution can most likely be
found by functional composition. The proposed solution de-
scribed here takes that approach, with some additional con-
straints to limit exponential search space growth. No AI sys-
tem has  so  far  demonstrated  reasoning  abilities  across  a
wide range of problems. Without this ability to recognise
general features of a problem then experiments to test a hy-
pothesis is not how AI typically works, but it is how Science
works. We discuss a mainly top down solution to this prob-
lem in this paper. Finding a robust generic solution to this
category of reasoning problems would provide scaffolding
on which other approaches to AI can relation. At no point
are solutions remembered and reused. A search for common
patterns is however used and solutions inspired by this. It
might be the one approach that binds them all.

 Introduction
This paper was written perhaps 20% of the way through a
journey  to  implement  a  solution  to  the  ARC-AGI  chal-
lenge.  It  describes  the research  on computer  search  pro-
cess, to solve the ARC-AGI problem. This paper is there-
fore a snapshot of what has been learnt so far, and how this
informs  future  directions.  The  solution  currently  solves
about 12% of the evaluation problems, but disappointingly
only 1% of the hidden test set problems. Clearly there is a
long way to go. 

However, the speed of solving more problems as time goes
by and richer representations of the problem space with re-
usable higher level functional composition is encouraging,
and with sufficient effort there is no reason to believe this
cannot continue to accelerate and solve most problems. It
is  estimated that  approximately 6 months of effort  is re-
quired to reach the 85% level. There is another source of
problems, the code is written in Rust, not Python and hence
some  persuasion  was  needed  to  simply  get  it  to  run  in
Kaggle. There may be issues with this process as a higher
percentage on the secret test run would be expected given

the  12%  evaluation  score.  Alternatively  the  functional
breakdown and recomposition of solutions may be insuffi-
ciently generic. This was not the case between the test and
evaluation sets where solving problems for either case of-
ten uplifts the scores with other similar tasks, in fact they
are similar for both and as similar categories of problems
in  one  data  set  were  solved  this  was  reflected  with  the
other data set, as would be expecting with generalisation.

Future effort will be spent on solving more problems, in a
data driven and generic manner. A number of helpful data
structures have been developed which aid in the solving of
problems as does a lengthening and improving set of com-
posable  functions  based  on  them.  Composable  functions
can often be improved too. For example recursive shape
finding and the positioning of those shapes can be ambigu-
ous from a computer point of view but presents few prob-
lems to the human visual system. In most cases there are
remedies and creating then using them selectively can be
further automated. This will be discussed in greater detail
later. 

Unresolved Issues

Not all categories of Shapes found within Grid have been
identified yet. As have not all composable functions or al-
ternative functions with a particular signature. Much more
work is required to fill out these missing details.

Overview of future work

Address the unresolved issues. Ensure solutions are as gen-
eric as possible and share signatures. Any iterations apply-
ing a function to multiple Shapes or other objects should be
wrapped in higher order functions, which in turn should be
composable. 

 Methods

Background



The puzzles in ARC-AGI differ in a number of ways. Di-
mensionality,  of  shapes,  the  number  of  shapes  within  a
grid, the sub-shapes (if any) within shapes and how those
shapes differ  and map onto answers,  the mix of  colours
used, how shapes extend on another and many others fea-
tures. These differences can be used as constraints to in-
form future effort  and select from the set of composable
functions available.  These constraints describe a directed
graph that in many instances is a simple tree. This reduces
computation by approximately an order of magnitude. A
top  down  approach  has  been  pursued.  The  lower  level
functions are developed as needed to encapsulate specific
actions, as data driven and parametrised entities. Assump-
tions about size, shape, colour, number and orientation etc.
are not hardcoded but are discovered from context given
the examples given (the experiments) and their answers. 

The Scientific Method

The ARC-AGI challenge is  presented  as a  scientific  en-
deavour to be solved in a scientific manner. It is also based
on human intelligence tests. So solving it using a scientific
approach,  deterministically,  with  some  introspection  on
what humans might do when faced with the problems sup-
plied  was  the  guiding  principle  used  to  solve  this  chal-
lenge.  This  is  unsurprisingly a huge enterprise,  however
approaching it as a stochastic problem to be solved with
brute force did not seem right. That is not what humans do
and we  are  attempting  to  emulate  human thinking  here.
Feature  design,  constraint  recognition  and  then  function
composition  (or  rather  decomposition,  then  reassembly)
would appear to be a better approach. There may be a place
for  simple neural  new recognition of  low level  features,
however, given the fact we are operating in a simple grid
environment  would  suggest  that  is  unnecessary  here  for
now. For scenes in ‘real’ life it will almost certainly be re-
quired.

Science is first and foremost about Abductive reasoning. A
hypothesis is framed, then tested and if it passes all tests it
is considered a theory that can be used to answer similar
questions. This is exactly the approach taken here. 

Importantly,  all  reasoning  should be  sound and explain-
able. This is not the case with Neural  nets. They have a
place but that place in not in this context, at the reasoning
level. The seductive qualities of a methodology to generate
a  black  box universal  function  approximator  is  also  ex-
tremely  data  hungry  and  few shot  learning  is  mandated
here. 

Task Definition

This  challenge  is  modelled  on  human  intelligence  tests,
they are relatively easy to complete for most humans. They
are visual reasoning tests using a 2-D grid with coloured
pixels. These pixels for often form ‘shapes’ in the grid that
are then transformed in some way to obtain an answer. No
two tests are exactly there same, however, there are a num-
ber of common classes of transformations that can be ob-
served  in  the  data.  These  common  transformations  are
common abstractions  that  can  then  be  parametrised  and
solutions found. The common abstractions and the trans-
formations that  underlie  them can only be applied when
certain constraints are satisfied. 

If it is possible to identify the abstraction classes, the spe-
cial conditions under which they apply (which imply con-
straints)  and  the  actual  parametrised  transformation  re-
quired. Then it is possible to constrain combinatorial ex-
plosion and often solve similar problems too with paramet-
erisation. 

This  process  of  identifying  abstractions,  transformations
and constraints requires examination of different puzzles,
creating  solutions when new but  similar  puzzles  are  en-
countered with sufficient similarity to these already solved
further parametrising the previous solutions to accommod-
ate the new examples.

A common abstraction is to find shapes in the grid and in
turn characterise those shapes This is not a simple process,
some shapes touch other  shapes,  making them harder  to
identify. There may be a background supplied which can
be used to separate these shapes. When there is not post
processing may be required to identify touching shapes and
separate them out. Shapes have attributes such as size of X
and  Y dimensions,  colours  (in  fact  shapes  can  be  con-
sidered as either single coloured shapes of multi-coloured
shapes). Shapes may in turn have additional internal struc-
ture, essentially shapes within shapes. 

Shapes may be laid out in the enclosing grid relative to one
another. There is also some ambiguity in this. For example
some abstractions that require relatively placing of shapes
to operate.  Concepts  of  top right,  top left,  bottom right,
bottom left might be required. These positions may not be
simply discoverable from the X and Y coordinates of the
shapes and require either a partitioning of the shapes relat-
ive  to  the  position  in  the  containing  grid,  and/or  looser
definition of position relative to one another (that can be
used to sort them) achieved by a looser definition of the Y
coordinate (assuming sorting is by X then Y coordinates). 

So, the basic strategy has been to identify grid features and
common constraints of common features. Then refine those
features when necessary (touching shapes, sub-shapes, rel-



ative  position  etc).  Then  compose  functions  that  satisfy
these examples (the experimental cases). If and only if this
works then an answer has probably be identified.

There is also a useful concept of closeness to a solutions. If
some experimental examples are satisfied but not all then
further refinement will often accommodate the failing ex-
amples. Also, reducing pixel difference count between ex-
amples  and solutions can  often  indicate  partial  solutions
too,  and  again  further  refinement  may  improve  existing
solutions to accommodate new cases. 

A useful metric of generalisation is available. The ratio of
fixed function transformations and problems solved. At the
moment this stands at about 1.4, but the greater this num-
ber the more generalisation. Time will tell.

Datasets

There are 3 datasets available, training, evaluation and test.
They all have a similar structure with the exception of the
test set not having answers to the final test. The data de-
scribes a 2-D grid of varying sizes with each cell  in the
grid able to take on 9 different colours. An answer is some
some other configuration of the grid derived from the ini-
tial  grid.  There  are  at  least  two  experimental  examples,
with answers, given that follow a general principle. These
examples can be thought of as experiments that are determ-
inistic answers to a hypothesis. The challenge is to identify
the hypothesis so it can be applied to the final test example.
The final test in the test set does not have an answer, so the
challenge is to derive this.

Motivation

The major motivate in addressing ARC-AGI was frustra-
tion  after  spending  a  year  writing  wrappers  for  LLMs,
namely frustration with the quality and unpredictability of
the results. It  was hoped that it might be possible to use
LLMs to generate code when given a code framework and
a definition of individual puzzles.  This helped a little  in
some cases but on the whole was slower than hand coding
functions and function compositions. This may be an issue
with LLM training being  less  with  Rust  than  other  lan-
guages like Python. However much richer data-structures
and 2 orders of magnitude execution speed increase allow
for much more productivity in Rust  than Python. Not to
mention fewer bugs and more elegant and satisfying code.

Data Structures

The representation of the data for the challenge is import-
ant. At the top level is a Grid, composed of Cells which 
each have a position and colour within the Grid. A Grid 

can be decomposed into a sequence of Shapes that are 
again composed of a subset of the Cells within the Grid 
(with position relative to their position in the Grid). 

At each level the object in question is categorised. Grids 
are categorised by global shape (size, square, rectangle, 
etc), where this applies across all examples. Similarly for 
shapes with some additional relational categorisation. Cells
are categorised by colour and their position within a shape.
This global categorisation is meant to be fast and is used to
categorise Objects in a directed graph that can be quickly 
navigated so various transformations are only attempted 
when appropriate, reducing search space. This results so 
far in an approximate 5 fold improvement in execution 
speed. This is expected to improve as more cases are 
solved. 

The categorisation can optionally be improved with addi-
tional predicates that help improve the differentiation 
between different cases. For example the number of 
Shapes within a Grid is quick to calculate and so is always 
done. However, the predicate to identify whether all shapes
have the same size, or their relative orientation (which can 
be fuzzy), is only calculated on demand. Shape identifica-
tion is not perfect on the initial pass, for example touching 
shapes are initially identified as single shapes and again 
some additional processing is done on demand. 

Categorisation rarely results in a single possible transform-
ation. In some cases, for example when shapes are rotated 
or mirrored so a sequence of transformations can be tried 
and the one that works for all examples then applied to cre-
ate the final answer. Sometimes the appropriate transform-
ation may be identifiable by categorising the Example to 
Solution mapping.

The above is used to create a pipeline of categorise, filter, 
further process and/or further categorise, filter, try variants.
Primitive transformations can also be twinned with other 
transformations to build higher level transformations. This 
is a process of discovery, at the moment largely static and 
without long range backtracking. This will likely change 
with next years iteration of the ARC-AGI competition.  

Use Case Examples

Here we discuss some example for particulate cases and al-
gorithms use to solve them.

Black patches on an otherwise fully populated Grid



Preconditions:  There  are  no  identifiable  shapes  smaller
than grid size and hence overlapping. There are rectangular
areas that are black.

Identify: For Black rectangular areas. Find the pixels sur-
rounding each rectangular area. If it touches an edge of a
grid then any colour is permissible along that edge.

Find: other places in the triangular grid that have the same
surrounding pixel colours. If  more than one, then the in-
ternal colour must be in the same order and position.

Do: fill in the interior of the Black rectangle with the col-
ours found.

Extensions: Rectangle can be any colour, not just Black. A
single  area  fully  populated  with  non-rectangular  colour
pixels  may  not  be  possible.  If  so  find  areas,  order  by
largest and fill in each partial answer. 

Identify a shape by some criteria

Preconditions: A Grid may contains shapes (in fact most
do). Shapes are contained by a rectangle and identified by
finding reachable coloured pixels (either the same colour
or any colour other that the background colour [normally
Black]). Occasionally rectangles touch and under some cir-
cumstances can be further separated (when dimensions are
known). Second order Shapes may also sometimes be fur-
ther embedded in first order shapes. Identify the number of
shapes in the output of training samples can aid categorisa-
tion and help target solutions. 

Identify:  Identified  shapes  can  be  ordered,  classified  by
size,  colour,  or  shape  (arms,  hollows  etc.),  orientation,
uniqueness, count and pixel positions. 

Find: The differentiating features of the shapes found. Of-
ten single pixel ‘shapes’ are noise. Multiple shapes of the
same size, or colour, or pixel layout may have some rela-
tionship with one another. Finding this set of relationships
is a major guide to a solution. Knowing the output shapes
and their relationships to the input shapes is very useful.

Do: May operations are possible. Single shape grids may
simply be turned back into a grid (eliminating surrounding
background pixels). Or there may be some transformation
of the shape, for example rotation or mirroring. Shapes (of-
ten with non-black separating colours) may be combined in
different ways (so there would be one output shape, of the
same size as the input shapes) Or/And/Xor or overlay in a
particular  order  (a  permutation  of  the  number  of  input
shapes) etc. Shapes may be given surrounds, which are of-
ten other shapes. There are many possibilities. Again, find

these possibilities is crucial to both containing the explo-
sion of seach space and creating generic composable func-
tions.

Extensions: Simply continue to grow the functional ways
in which shapes can be combined or otherwise enhanced.
Categorisation can help a great  deal  here in fighting un-
checked search space growth. This is a very generic cat-
egory and can be further sub-categorised in a large number
of ways.

Blank Grids

Preconditions: Grids composed with a single uniform col-
our in every position, normally Black. Under these circum-
stances it is essential that the target pattern in the output
Grid is identified. This might be borders, spirals and pos-
sibly other patterns.

Identify: The output pattern. As this set is large then only
those seen already can be anticipated, with some simple
variants such as direction of the spiral or colour. 

Find: The actual output pattern, then scale it for the Grid
size (the same as the input size). 

Do: If a shape was identified then draw it to scale and with
the correct colour (the same as the training examples).

Extensions: There are not many of these,  but variants of
the shapes seen are probably most likely to be found in the
private evaluation set. If they are not, then this is not a very
good test!

Indexed Shapes

Preconditions: There are a number of Shapes that approx-
imately in a regular grid pattern within the enclosing Grid. 

Identify:  Parse the Grid  to  find Shapes.  The size of  the
Shapes  will  normally  be  the  same.  The  origin  of  each
shape will have at least one other Shape with a similar X
position and at least one other Shape with a similar Y posi-
tion.

Find: An ordering for the Shapes in the Grid that minim-
ises the distance from the origin of the grid.

Do: Create an output Grid, that might have a single colour
pixel with the same number pixels in the output Grid as the
number of Shapes in the input Grid. The output pixel being
coloured the same as the input shape.



Extensions: The shapes may vary in size, providing the rel-
ative positioning of the Shapes is the same. The output grid
may be a single line in the X or Y axis. If the Shapes are
not a single colour then this arrangement might be depend-
ant on the majority (or even minority) colour in the Shapes
(in which case all Shapes would be mixed colours). Many
arrangements are possible, but in all cases constrained by
categorical  features  of  the  Shapes  and  the  relationship
between the  input  and  output  Shapes.  Of  course  the  as-
sumption is a relationship found in the experimental  ex-
amples also follows for the final solution.

Joined Shapes

Preconditions: Shapes can be found currently by finding a
non-background cell then finding all the cells, of either the
same colour or cells that are simply non-background that
are  reachable  (normally diagonally  too).  The rectangular
extent of the cells found is considered a Shape (single col-
oured or multi-coloured). This works reasonably well, but
there are problems, such as when the background colour is
not  Black.  So a background colour  discovery  process  is
needed too. Shapes may also touch one another. This can
be detected if the majority of the shapes found for every
experimental example for a task is a rectangle with one of
the dimensions the same as twice the same dimension of
the majority. Additional parsing can separate the shapes. 

Identify: There are Shapes in the Grid. For each shape if it
is anomalous then apply further processing. 

Find: Now we have Shapes of uniform dimensionality and
colouration, feed these Shapes into the normal Shapes pro-
cessing pipeline. Further categorisation of said Shapes will
guide this process as normal.

Do: Further process Shapes according to variants know and
in turn passed this data one to compose functions appropri-
ately.

Extensions: Many are possible. This is largely a process of 
slow discovery of new arrangements and the corresponding
functions required to produce the solutions. Two things are
happening here, higher order functions for common groups
of transformations are discovered and then used in other 
similar situations. Also additional lower level functions are
discovered which previously were not known. Most func-
tions have the same signatures so composition is easy. Iter-
ation over multiple functions at a level of abstraction is 
carried out with higher order functions that take a list of 
more basic functions.

Enhanced Shapes

Preconditions:  Shapes  can  be  identified  that  have  some
common attribute such as colour and/or size. There is an-
other shape that can visibly surround the shape, or alternat-
ively additional pixels on the example solutions that sur-
round the shape in some consistent way. 

Identify: Identify the Shapes and the pattern that surrounds
the shapes. 

Find: Replicate the pattern found around each shape.

Do: Create a solution for the test with Shapes surrounded
appropriately.

Extensions; The surrounding patterns may be lines going 
horizontally, vertically of diagonally to other Shapes or to 
the edges of the enclosing Grid. Lines that cross may 
change the colour of the crossing point, or overlay the pre-
vious colour.

Other Shape based Transformations

Preconditions:  Shapes  exist,  that  are  not  covered  by the
previous categorisation of shapes. This is an evolving task
and is in fact the primary missing piece from the existing
submission.

Identify:  What  makes the grid and it’s  contained shapes
different?

Find: Parametrise instances of this category and enumerate
the possibly generic transformations that might transform it
into the desired answer.

Do: Carry out the discovered transformation on all task ex-
amples. If they agree with the experimental answer, then
generate a candidate solution.

Extensions: This the biggest category so far. Finding 
Shapes is a prerequisite. The relative characteristics of a 
Grid/Set of Shapes and the relationship between the shapes
(and the output shapes in the solved examples)  will oc-
cupy the majority of the effort between now and the next 
iteration of this prize. There are subcategories of solutions 
too. A solution may require a unique sequence of func-
tional compositions, or it may be general enough to be 
found with some search over a set of transformations at 
some level (seen before), or it may be capable of trans-
forming more than one task into a solution because the in-
termediate transformations are sufficiently generic. Most 
effort will be spent on the second and third cases. There are
already cases where unique solutions have been subsumed 
by more generic code.



There are many other generic patterns.

Assumptions

There are some fundamental assumptions in this work that
bare mentioning:

• The  search  space  within  a  Grid  is  not  random.
There a patterns that a human brain can identify
and extrapolate from. This constrains the search
space.

• In  a  two  dimensional  space,  there  are  only  so
many ways in which it can be partitioned and be
‘meaningful’ to a human. 

• There are only so many patterns that make sense
to humans.

• Patterns  can  be  distinguished  in  only  so  many
ways. Sub-areas of the Grid form what is called
here Shapes. These can be negative Shapes using
what might be a background colour superimposed
on a more noisy background.  Patterns  repeating
colours in lines going up/does, left/right or along
diagonals my occur too. Identifying these patterns
and testing for some permutation of them in the
example solutions is a good guide to a solution. 

• Using features of the space the partitioning can be
a strong guide to how the Grid and the objects
identified in the Grid relate to one another. Again
constraining search space.

• Find the ‘right’ partitioning and the ‘right; func-
tions to compose (and the composition ordering)
is the main task required to solve this challenge.

 Results
Metrics

With ARC-AGI the only real metric is how many tasks in
the secret hold out set are passed. This might be considered
both a failing and a strength. So there is only an accuracy
score, there is no concept of Precision/Recall or F1 score.
It is hence difficult to determine how ‘close’ a score it to
the correct  solution, or even how many examples/experi-
ments with solutions worked with a particular task. 

For this reason new metrics were invented.

A primary metric of success is will a particular function
closure solve more than one problem. So what is the ratio
of solutions to problems answered. This is currently about
1.4,  so  for  each  closer  approximately  1.4  problems  are
solved. This is likely to improve greatly with more effort
and time spent refining the constraints, lower level func-

tions, parametrisation from training data and other factors.
As  with  many  problems  there  are  only  so  many  ways
things are actually done, entropy does not tend to increase
when things are transformed by intelligent systems, even if
the possible space is much larger. This can be used as an
additional constraint on likely outcomes as can decreasing
pixel count difference given experimental examples.

The training data set tends be simpler, there are generally
only one or  two features  that  need  to  be  modelled.  The
evaluation set has more possibilities. So a second metric is
how many training solutions result in how many evaluation
set solutions. This was disappointing when first tried, very
few being the answer,  but  developing evaluation set  an-
swers then reapplying them to the training data tended to
yield better conversion rates.  This is the reverse of what
the competiton authors expected or wanted, but works well
for the approach taken here given the public data. 

Another metric is pixel cover. For a candidate solution if a
series of transformations resulting a in monotonically de-
creasing  number  of  pixel  differences  between  the  given
solution and the progress so far. This again can be used to
determine the efficacy of a transformation, if the pixel dif-
ferent count increases then the transformation is probably
not useful and another transformation can be applied. This
is not a perfect guide but nevertheless useful.

What is a little confusing is this does not work as well as
expected  with the secret  holdout  test  set.  There  are  two
plausible explanations for this, firstly that the approach is
simply flawed. Alternatively that the JSON generated for
the solutions file is flawed in some way or there is some
other issue that is not flagged as an error but nevertheless
is poisoning the solutions generated somehow. Some time
was spent trying to find the closure that actually resulting
in a score. Given the code is deterministic a binary chop of
the results  was undertaken.  This did not find the ‘good’
closure,  even worse  if  half  the file  is  forced  to  return  a
dummy and hence wrong result and this test is run twice on
distinct and separate halves of the closures, then it will pro-
duce a 1.00 on both halves. This is nonsense. A possible
solution is to do the I/O in python and pass solutions back
from Rust  to  python.  That  is  a  lot  of  unanticipated  and
what  should  be  unnecessary  work  with  no  guarantee  of
success. The Rust file, and this has been checked multiple
times,  does not  generate  scoring  errors  and is  formatted
correctly.  However,  it  does not contain white space after
commas for example, which is a difference but is still valid
JSON. 

Applicability of ML Theory



This  solution to  the  ARC-AGI prize  is  essentially  Sym-
bolic AI with constraints to limit  search space explosive
growth. Constraints are applied in order of ‘cost’  simple
constraints roughly partition the search space. Within each
subspace further  constraints can be applied (for  example
we have found N shapes of equal size). This is recursive
(there may be an even number of shapes, with a particular
orientation to one another and a similar number of shapes
[or trivial shapes,  I.e pixels] in the output example solu-
tions). 

The constraints ideally would form a tree structure. At the
moment there appears  to be at  best  a directed graph. So
categorisation may need to shape  terminal nodes (which
are  function  closures  containing  a  sequence  of  paramet-
rised and generic transformations). This is not necessarily a
bad thing as it suggests there is either a better categorisa-
tion possible and/or the function closure is generic enough
to span categorisations. 

Within function closures a it is possible to call additional
functions (all  with the same signature)  that  take a lower
level function and apply possible transformations. This is
also a fruitful  area and it is hoped this can be expanded
beyond the And/Or/Xor, Overlay order, rotations and mir-
roring currently catered for.

Comparison of Results

To Do:

1. Improve categorisation. Possibly semi-automating
it with a search through constraint space at a num-
ber of levels and grouping categorisations.  This
would help generate code statically as a first pass,
then possibly be extended later, if necessary, to an
interpreted approach operating on a new and un-
known set of Shapes. It is currently thought that a
static search may be sufficient as the novel per-
mutations  of  possibilities  will  diminish as  there
are  only  so  many ways  of  doing  things.  Either
way, static categorisation will greatly trim search
space with little run time overhead.

2. Improve  Shape  recognition.  Shapes  may  touch,
overlap and contain sub-shapes, improve it’s dis-
crimination and discovery capabilities.

3. Improve Shape positioning and ordering recogni-
tion. At the moment shapes are only sorted by X
or Y axis,  this means that  if  there are one or a
small number of positional differences in one or
both of these axis, they are not sorted in a useful
order.  Fuzzy positioning and sorting is required,

for example when Grid filling with derived shapes
for an example solution.

4. Additional  grouping  of  functions  with the same
signature that can be applied at some point in the
sequence  of  functional  compositions.  Possibly
Shapes containing other shapes and extensions of
shapes to touch or cross other shapes possibly to
the Grid borders.  Also transposing of  shapes to
the edges  of  a  Grid  or  some other  constraining
Shape.

5. Produce more intermediate results that are a step
towards the answer and can in turn be composed.

6. Take  examples  and  generate  more  ‘similar’  ex-
amples and use a learning algorithm. Thos would
be a last resort.

7. Further Identify the degrees of freedom, of objects
in the object hierarchy. Colour(s), position (relat-
ive to peers and relative to other levels), size, ori-
entation, colour, …).

8. Relative  distance  between  objects.  Ratios  of  all
measurements. 

9. Possible  need  for  backtracking  when  potential
solutions do not work. Only needed if categorisa-
tion does not result in a tree with single and uni-
uque terminal nodes (but is a directed graph) and
trying of multiple solutions has a significant per-
formance overhead.

 Discussion

Significance of Results

To date only about 12% of the tasks are solved by this ap-
proach. It was slow to start but is now accelerating as bet-
ter categorisation is applied and improved. Functions are
improving  and  becoming  more  generic.  So  solving  new
cases is often relatively simple, or they further inform ex-
isting code to make it more generic. There are still novel
problems to solve but with the expectation that the same
reasoning applies and these new cases will be solved in an
accelerating manner. 

How to improve results

Better  categorisation and automated categorisation.  More
iteration over functions with same signature. Better para-
metrisation of existing function (no numeric constants any-
where).  More  guidance  from example solutions.  ‘Fuzzy’
relative positioning of Shapes. Better shape parsing (touch-
ing/overlapping)

Limitations



There is  no reason to assume that  the methodology out-
lined in this paper will not be able to solve all of the prob-
lems in this competition. However, the natural extension of
this is to identify 2 dimensional Grids with very large pixel
counts in the real world and then 3 dimensional Objects.
Identifying low level Shapes, composing them then identi-
fying higher level Shapes is probably a sensible strategy.
However it will be orders of magnitude harder to achieve
in the real world so new tools will likely be required. There
will also likely be a place for Neural Net based low level
object recognition too as part of those tools. The usefulness
of LLMs is questionable.
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Code Examples
Mirrorred in X and Y

let func = |ex: &Example| {
    // Ensure there is one and only one Shape in the Grid
    if ex.input.coloured_shapes.len() != 1 {
        return Grid::trivial();
    }

    // Turn the Grid into a Shapes struct
    let s = ex.input.grid.as_shape();

    let rows = s.cells.rows;
    let cols = s.cells.columns;
    // Double both X and Y dimensions
    let mut shapes = Shapes::new_sized(rows * 2, cols * 2);

    // Make four copies of the original shape with appropriate mirroring
    shapes.shapes.push(s.mirrored_x().mirrored_y());
    shapes.shapes.push(s.mirrored_y().translate_absolute(rows, 0));
    shapes.shapes.push(s.mirrored_x().translate_absolute(0, cols));
    shapes.shapes.push(s.translate_absolute(rows, cols));

    // Turn Shapes back into a Grid for the final answer
    shapes.to_grid()
};

// Run experiment over all example experiments for above closure
if run_experiment(&file, 280, is_test, &example, &targets, &mut done, &func, 
&mut output) { continue; };

Possible improvements would be to calculate the difference in size between input 
and output and then create an appropriate number of output subshapes in correct di-
mensions. Also discover the translations required from the example experiments and
apply those, not a fixed set of transformations. 

I/O mapping with some attribute removed but using common mapping

// Cross example knowledge needed for closure. This takes input Grid examples,
// removes colour data then maps it to a solution Grid. The bleached map is
// indexed as json as that is a simple way to capture the distribution

// of Pixels while bleaching removes colour differences. 
// The bleached map can then be used trivially to answer the experiments but
// more importantly the same structure, but not colour, is used by the
// final solution. 
// NOTE: We need to be very careful here that the examples are categorised
// correctly or false solutions might result as we would just be replicating what 
// exists already and the experiments framework gives us no useful information.
let h = example.bleached_io_map();
                
let func = |ex: &Example| {
    if let Some(grid) = h.get(&ex.input.grid.bleach().to_json()) {
        grid.clone()    
    } else {        
        Grid::trivial() 
    }       
};              

if run_experiment(&file, 221, is_test, &example, &targets, &mut done, &func, 
&mut output) { continue; };

Apply set of functions with same signature to find answer to all experiments

// Function that iterates over a set of functions
pub fn gravity_only(grid: &Grid, n: &mut usize) -> Grid {
    let func = [Grid::stretch_down, Grid::gravity_down, Grid::gravity_up];
    if *n == usize::MAX {
        *n = func.len();
    }
    if *n == 0 {
        Grid::trivial()
    } else {
        func[func.len() - *n](grid)
    }
}

if run_experiment_tries(&file, 350, is_test, &example, &targets, &mut done, &|ex, 
_, n| gravity_only(ex, n), &mut output) { continue; };

Possible improvements are to add additional transformations

Create array of colours from the coloured shapes in input array with size > 1

// Find dimensions and colour for outpur, from example output
let x = example.examples[0].output.grid.cells.rows;
let y = example.examples[0].output.grid.cells.columns;

// One dimension should be 1
if x == 1 || y == 1 {
    let colour = example.examples[0].output.grid.colour;

    let func = |ex: &Example| {
        if x == 0 || y == 0 {
             return Grid::trivial();
        }
        let mut i = 0;
        let mut grid = Grid::new(x, y, Colour::Black);

        for s in ex.input.shapes.shapes.iter() {
            if i >= y { // Make sure we don’t exceed output size
                  return Grid::trivial();
            }
         // If colour and size correct then add to output
         if s.colour == colour && s.size() > 1 {
              if x == 1 { // change depending on dimensionality
                  grid.cells[(0, i)].colour = colour;
              else {
                  grid.cells[(i, 0)].colour = colour;
              }
              i += 1;
          }
        }

        grid
    };

    if run_experiment(&file, 400, is_test, &example, &targets, &mut done, &func, 
&mut output) { continue; };
}



Output public test run

cargo run --release test

007bbfb7: {Div9In, IdenticalNoColours, InLessThanOut, InOutSquare, Is3x3In, 
Is3x3Out, SameColour, SingleColourIn, SingleColourOut}
Success: 00130 / 007bbfb7
00d62c1b: {BGGridInBlack, BGGridOutBlack, EvenRowsIn, EvenRowsOut, InOut-
SquareSameSize, InOutSquareSameSizeEven, SingleColourIn}
017c7c7b: {EvenRowsIn, IdenticalNoColours, InLessThanOut, InOutSameShapes, 
InOutSameShapesColoured, InOutShapeCount, Is3x3In, Is3x3Out, SingleColourIn, 
SingleColourOut, SingleShapeIn, SingleShapeOut}
025d127b: {EvenRowsIn, EvenRowsOut, IdenticalColours, InOutSameShapes, In-
OutSameShapesColoured, InOutSameSize, InOutShapeCount}
045e512c: {BGGridInBlack, BGGridOutBlack, IdenticalNoColours, InLessCoun-
tOut, InOutSquareSameSize, InOutSquareSameSizeOdd, Is3x3In, Is3x3Out}
0520fde7: {Div9Out, In7x3, Is3x3Out, OutLessThanIn, OutSquare, SingleCol-
ourOut}
Success: 00320 / 0520fde7
05269061: {FullyPopulatedOut, IdenticalNoColours, InOutSquareSameSize, InOut-
SquareSameSizeOdd, SingleColouredShapeOut}
05f2a901: {IdenticalColours, InOutSameShapes, InOutSameSize, InOut-
ShapeCount, InSameCountOut, SingleColouredShapeOut}
06df4c85: {BGGridInBlack, BGGridInColoured, BGGridOutBlack, BGGridOutCol-
oured, IdenticalNoColours, InOutSameShapes, InOutSameShapesColoured, InOut-
ShapeCount, InOutSquareSameSize, InSameCountOut}
08ed6ac7: {BGGridInBlack, BGGridOutBlack, IdenticalNoPixels, InOutSame-
Shapes, InOutSameShapesColoured, InOutShapeCount, InOutSquareSameSize, In-
OutSquareSameSizeOdd, InSameCountOut, Is3x3In, Is3x3Out, SingleColourIn}
09629e4f: {BGGridInBlack, BGGridInColoured, BGGridOutBlack, BGGridOutCol-
oured, InOutSameShapes, InOutSameShapesColoured, InOutShapeCount, InOut-
SquareSameSize, InOutSquareSameSizeOdd, InSameCountOut}
Success: 00050 / 09629e4f
0962bcdd: {BGGridInBlack, BGGridOutBlack, EvenRowsIn, EvenRowsOut, 
IdenticalNoColours, InOutSameShapes, InOutSameShapesColoured, InOut-
ShapeCount, InOutSquareSameSize, InOutSquareSameSizeEven, InSameCountOut, 
Is3x3In, Is3x3Out}
0a938d79: {IdenticalNoColours, InLessCountOut, InOutSameSize}
0b148d64: {OutLessCountInColoured, OutLessThanIn, SingleColourOut}
Success: 00222 / 0b148d64
0ca9ddb6: {BGGridInBlack, BGGridOutBlack, InOutSameShapesColoured, InOut-
SquareSameSize, InOutSquareSameSizeOdd, InSameCountOutColoured, Is3x3In, 
Is3x3Out}
0d3d703e: {Div9In, Div9Out, FullyPopulatedIn, FullyPopulatedOut, IdenticalNo-
Colours, InOutSameShapes, InOutSameShapesColoured, InOutShapeCount, InOut-
SquareSameSize, InOutSquareSameSizeOdd, InSameCountOut, Is3x3In, Is3x3Out, 
MirrorXIn, MirrorXOut, SingleColouredShapeIn, SingleColouredShapeOut}
Success: 00251 / 0d3d703e
0dfd9992: {BlackPatches, FullyPopulatedOut, IdenticalNoColours, InOutSame-
ShapesColoured, InOutSquareSameSize, InOutSquareSameSizeOdd, InSameCoun-
tOutColoured, Is3x3In, Is3x3Out, SingleColouredShapeIn, SingleColoured-
ShapeOut}
0e206a2e: {EvenRowsIn, EvenRowsOut, IdenticalNoColours, InOutSameSize, Out-
LessCountInColoured}
10fcaaa3: {Double, EvenRowsOut, InLessCountOut, InLessThanOut, SingleCol-
ourIn}
Success: 00190 / 10fcaaa3
11852cab: {BGGridInBlack, BGGridOutBlack, EvenRowsIn, EvenRowsOut, 
IdenticalNoColours, InOutSquareSameSize, InOutSquareSameSizeEven, SingleCol-
ouredShapeOut}
1190e5a7: {BGGridInBlack, BGGridInColoured, FullyPopulatedIn, FullyPopulate-
dOut, InSquare, MirrorXOut, MirrorYOut, OutLessCountInColoured, OutLessTh-
anIn, SingleColourOut, SingleShapeOut, SymmetricOut}
137eaa0f: {BGGridInBlack, Div9Out, IdenticalNoColours, InOutSquare, Is3x3Out, 
OutLessCountInColoured, OutLessThanIn, SingleColouredShapeOut}
150deff5: {IdenticalNoPixels, InOutSameShapesColoured, InOutSameSize, Single-
ColourIn}
178fcbfb: {IdenticalNoColours, InLessCountOut, InOutSameSize, SingleColoured-
ShapeOut}
1a07d186: {InOutSameSize, OutLessCountInColoured}
1b2d62fb: {OutLessThanIn, SingleColourOut}
1b60fb0c: {BGGridInBlack, BGGridOutBlack, EvenRowsIn, EvenRowsOut, In-
LessCountOut, InOutSameShapesColoured, InOutSquareSameSize, InOutSquareS-
ameSizeEven, SingleColouredShapeOut, SingleColourIn, SingleShapeIn}
1bfc4729: {BGGridInBlack, EvenRowsIn, EvenRowsOut, IdenticalNoColours, In-
OutSameShapes, InOutShapeCount, InOutSquareSameSize, InOutSquareSameS-
izeEven, InSameCountOut, MirrorYOut, SingleColouredShapeOut}
1c786137: {OutLessThanIn}

1caeab9d: {IdenticalColours, InOutSameShapes, InOutSameSize, InOut-
ShapeCount, InSameCountOut}
1cf80156: {IdenticalColours, InOutSameShapes, InOutSameShapesColoured, In-
OutShapeCount, OutLessThanIn, SameColour, SingleColourIn, SingleColourOut, 
SingleShapeIn, SingleShapeOut}
Success: 00200 / 1cf80156
1e0a9b12: {GravityDown, IdenticalColours, InOutSquareSameSize, Out-
LessCountInColoured}
Success: 00350 / 1e0a9b12
39a8645d: {BGGridInBlack, Div9Out, EvenRowsIn, InOutSquare, Is3x3Out, Mir-
rorXOut, OutLessCountInColoured, OutLessThanIn, SingleColourOut, Single-
ShapeOut}
39a8645d 20  : 1 worked out of 3
Success: 00030 / 39a8645d
39e1d7f9: {BGGridInBlack, BGGridInColoured, BGGridOutBlack, BGGridOutCol-
oured, IdenticalNoColours, InOutSameShapes, InOutSameShapesColoured, InOut-
ShapeCount, InOutSquareSameSize, InSameCountOut, Is3x3In, Is3x3Out}
3aa6fb7a: {BGGridInBlack, BGGridOutBlack, InOutSameShapesColoured, InOut-
SquareSameSize, InOutSquareSameSizeOdd, InSameCountOutColoured, SingleCol-
ourIn}
3ac3eb23: {EvenRowsIn, EvenRowsOut, IdenticalNoColours, InOutSameShapes, 
InOutSameShapesColoured, InOutSameSize, InOutShapeCount}
3af2c5a8: {Double, EvenRowsOut, IdenticalNoColours, InLessThanOut, InOut-
SameShapes, InOutSameShapesColoured, InOutShapeCount, MirrorXOut, MirrorY-
Out, SameColour, SingleColourIn, SingleColourOut, SingleShapeIn, Single-
ShapeOut, SymmetricOut}
3bd67248: {InLessCountOut, InOutSquareSameSize, InOutSquareSameSizeOdd, 
MirrorXIn, SingleColouredShapeOut, SingleColourIn}
3bdb4ada: {EvenRowsIn, EvenRowsOut, IdenticalNoColours, InOutSameShapes, 
InOutSameShapesColoured, InOutSameSize, InOutShapeCount, InSameCountOut}
3befdf3e: {BGGridInBlack, BGGridOutBlack, EvenRowsIn, EvenRowsOut, 
IdenticalNoColours, InOutSameShapesColoured, InOutSquareSameSize, InOut-
SquareSameSizeEven, InSameCountOutColoured, SingleColouredShapeIn, Single-
ColouredShapeOut}
Success: 00050 / 3befdf3e
3c9b0459: {Div9In, Div9Out, FullyPopulatedIn, FullyPopulatedOut, IdenticalCol-
ours, InOutSameShapes, InOutSameShapesColoured, InOutShapeCount, InOut-
SquareSameSize, InOutSquareSameSizeOdd, InSameCountOut, Is3x3In, Is3x3Out, 
Rot180, SingleColouredShapeIn, SingleColouredShapeOut}
Success: 00000 / 3c9b0459
3de23699: {OutLessCountInColoured, OutLessThanIn, SingleColourOut}
3e980e27: {BGGridInBlack, BGGridOutBlack, IdenticalNoColours, InOutSame-
ShapesColoured, InOutSquareSameSize, InOutSquareSameSizeOdd, InSameCoun-
tOutColoured}
3eda0437: {InLessCountOut, InOutSameSize}
3f7978a0: {IdenticalNoColours, OutLessCountInColoured, OutLessThanIn}
40853293: {EvenRowsIn, EvenRowsOut, IdenticalNoColours, InOutSameSize, Out-
LessCountInColoured}
Success: 00051 / 40853293
4093f84a: {EvenRowsIn, EvenRowsOut, IdenticalNoPixels, InOutSquareSameSize, 
InOutSquareSameSizeEven, OutLessCountInColoured, SingleColourOut, Single-
ShapeOut}
41e4d17e: {BGGridInBlack, BGGridInColoured, FullyPopulatedIn, FullyPopulate-
dOut, IdenticalNoPixels, InLessCountOut, InOutSquareSameSize, InOutSquareS-
ameSizeOdd, Is3x3In, Is3x3Out, SingleColouredShapeOut}
4258a5f9: {BGGridInBlack, BGGridOutBlack, InOutSquareSameSize, InOut-
SquareSameSizeOdd, Is3x3In, Is3x3Out, SingleColourIn}
4290ef0e: {IdenticalNoColours, MirrorXOut, MirrorYOut, OutLessThanIn, Single-
ColouredShapeOut, SymmetricOut}
42a50994: {IdenticalNoColours, InOutSameSize, OutLessCountInColoured, Same-
Colour, SingleColourIn, SingleColourOut}
4347f46a: {IdenticalNoColours, InOutSameShapes, InOutSameShapesColoured, In-
OutSameSize, InOutShapeCount}
444801d8: {BGGridInBlack, BGGridOutBlack, EvenRowsIn, EvenRowsOut, 
IdenticalNoColours, InOutSameShapes, InOutShapeCount, InOutSquareSameSize, 
InOutSquareSameSizeEven, InSameCountOut}
445eab21: {BGGridInBlack, EvenRowsIn, EvenRowsOut, FullyPopulatedOut, In-
OutSquare, OutLessThanIn, SingleColourOut, SingleShapeOut}
Totals: {BGGridInBlack: 13, BGGridOutBlack: 29, BlackPatches: 4, BlankIn: 1, Di-
v9In: 5, Div9Out: 3, Double: 2, FullyPopulatedOut: 13, GravityDown: 2, Identical-
NoPixels: 8, InOutSameShapes: 29, InOutSameSize: 20, InOutSquare: 3, InOut-
SquareSameSize: 50, Is3x3In: 18, MirrorXOut: 6, OutLessThanIn: 36, SingleCol-
ouredShapeOut: 22, SingleColourIn: 15, SingleColourOut: 10, SingleShapeOut: 16}
Complete: {BGGridInBlack: 2, BGGridOutBlack: 2, BlackPatches: 1, BlankIn: 0, 
Div9In: 1, Div9Out: 1, Double: 1, FullyPopulatedOut: 0, GravityDown: 2, Identical-
NoPixels: 0, InOutSameShapes: 0, InOutSameSize: 1, InOutSquare: 1, InOut-
SquareSameSize: 3, Is3x3In: 0, MirrorXOut: 0, OutLessThanIn: 6, SingleColoured-
ShapeOut: 1, SingleColourIn: 0, SingleColourOut: 0, SingleShapeOut: 3}
cnt = 75, tries = 305, done = 25



{"007bbfb7", "0520fde7", "09629e4f", "0b148d64", "0d3d703e", "10fcaaa3", 
"1cf80156", "1e0a9b12", "1f85a75f", "1fad071e", "2013d3e2", "22eb0ac0", 
"239be575", "25ff71a9", "27a28665", "2dc579da", "31aa019c", "3428a4f5", 
"3618c87e", "363442ee", "3906de3d", "39a8645d", "3befdf3e", "3c9b0459", 
"40853293"}

So, there where 305 experiments carried out checking the input and output of ex-
amples and then ifand only  they are correct generating a sumbission file. Each task 
lists the higher level catagories found for the Grid. Of which 25 succeeded and 75 
failed. This took 144 milliseconds on a single core of an i9.

Github  Source Code

Cratesio: https://crates.io/search?q=arc-agi

Github: https://github.com/intelligentnet/arcagi

https://crates.io/search?q=arc-agi
https://github.com/intelligentnet/arcagi

	Abstract

