#!/usr/bin/env python import numpy as np from pyarpack import sparseLDLT as pyarpackSlv # Build laplacian. n = 4 i = np.array([], dtype='@PYINT@') j = np.array([], dtype='@PYINT@') Aij = np.array([], dtype='complex128') for k in range(n): for l in [k-1, k, k+1]: if l < 0 or l > n-1: continue i = np.append(i, np.@PYINT@(k)) # Casting value on append is MANDATORY or C++ won't get the expected type. j = np.append(j, np.@PYINT@(l)) # Casting value on append is MANDATORY or C++ won't get the expected type. if l == k: Aij = np.append(Aij, np.complex128(np.complex( 200., 200.))) # Casting value on append is MANDATORY or C++ won't get the expected type. if l == k-1: Aij = np.append(Aij, np.complex128(np.complex(-101., -101.))) # Casting value on append is MANDATORY or C++ won't get the expected type. if l == k+1: Aij = np.append(Aij, np.complex128(np.complex( -99., -99.))) # Casting value on append is MANDATORY or C++ won't get the expected type. for k, l, Akl in zip(i, j, Aij): print("A[", k, ",", l, "] =", Akl) A = (n, i, j, Aij) # coo format: dimension, i 0-based indices, j 0-based indices, Aij values. # Get and tune arpack solver. arpackSlv = pyarpackSlv.complexDouble() # Caution: complexDouble <=> np.array(..., dtype='complex128') arpackSlv.verbose = 3 # Set to 0 to get a quiet solve. arpackSlv.debug = 1 # Set to 0 to get a quiet solve. arpackSlv.nbEV = 1 arpackSlv.nbCV = 2*arpackSlv.nbEV + 1 arpackSlv.mag = 'LM' arpackSlv.maxIt = 200 arpackSlv.slvOffset = 0. arpackSlv.slvScale = 1. arpackSlv.symPb = False # Solve eigen problem. rc = arpackSlv.solve(A) assert rc == 0, "bad solve" rc = arpackSlv.checkEigVec(A) assert rc == 0, "bad checkEigVec" # Print out results (mode selected, eigen vectors, eigen values, ...). assert arpackSlv.nbEV == len(arpackSlv.val), "bad result" print("\nresults:\n") print("mode selected:", arpackSlv.mode) print("nb iterations:", arpackSlv.nbIt) print("Reverse Communication Interface time:", arpackSlv.rciTime, "s") for val, vec in zip(arpackSlv.val, arpackSlv.vec): print("eigen value:", val) print("eigen vector:") print(vec) ####################################################################################### print("\n##########################################################################\n") ####################################################################################### # Build laplacian. n = 8 i = np.array([], dtype='@PYINT@') j = np.array([], dtype='@PYINT@') Aij = np.array([], dtype='complex64') Bij = np.array([], dtype='complex64') for k in range(n): for l in [k-1, k, k+1]: if l < 0 or l > n-1: continue i = np.append(i, np.@PYINT@(k+1)) # Casting value on append is MANDATORY or C++ won't get the expected type. j = np.append(j, np.@PYINT@(l+1)) # Casting value on append is MANDATORY or C++ won't get the expected type. if l == k: Aij = np.append(Aij, np.complex64(np.complex( 200., 200.))) # Casting value on append is MANDATORY or C++ won't get the expected type. Bij = np.append(Bij, np.complex64(np.complex( 33.3, 33.3))) # Casting value on append is MANDATORY or C++ won't get the expected type. if l == k-1: Aij = np.append(Aij, np.complex64(np.complex(-101., -101.))) # Casting value on append is MANDATORY or C++ won't get the expected type. Bij = np.append(Bij, np.complex64(np.complex( 16.6, 16.6))) # Casting value on append is MANDATORY or C++ won't get the expected type. if l == k+1: Aij = np.append(Aij, np.complex64(np.complex( -99., -99.))) # Casting value on append is MANDATORY or C++ won't get the expected type. Bij = np.append(Bij, np.complex64(np.complex( 16.6, 16.6))) # Casting value on append is MANDATORY or C++ won't get the expected type. for k, l, Akl in zip(i, j, Aij): print("A[", k, ",", l, "] =", Akl) for k, l, Bkl in zip(i, j, Bij): print("B[", k, ",", l, "] =", Bkl) A = (n, i, j, Aij) # coo format: dimension, i 1-based indices, j 1-based indices, Aij values. B = (n, i, j, Bij) # coo format: dimension, i 1-based indices, j 1-based indices, Bij values. # Get and tune arpack solver. arpackSlv = pyarpackSlv.complexFloat() # Caution: complexFloat <=> np.array(..., dtype='complex64') arpackSlv.verbose = 3 # Set to 0 to get a quiet solve. arpackSlv.debug = 1 # Set to 0 to get a quiet solve. arpackSlv.nbEV = 2 arpackSlv.nbCV = 2*arpackSlv.nbEV + 1 arpackSlv.mag = 'LM' arpackSlv.maxIt = 200 arpackSlv.slvOffset = 0. arpackSlv.slvScale = 1. arpackSlv.sigmaReal = 1 arpackSlv.sigmaImag = 1 arpackSlv.symPb = False # Solve eigen problem. rc = arpackSlv.solve(A, B) assert rc == 0, "bad solve" rc = arpackSlv.checkEigVec(A, B, 1.e-2) assert rc == 0, "bad checkEigVec" # Print out results (mode selected, eigen vectors, eigen values, ...). assert arpackSlv.nbEV == len(arpackSlv.val), "bad result" print("\nresults:\n") print("mode selected:", arpackSlv.mode) print("nb iterations:", arpackSlv.nbIt) print("Reverse Communication Interface time:", arpackSlv.rciTime, "s") for val, vec in zip(arpackSlv.val, arpackSlv.vec): print("eigen value:", val) print("eigen vector:") for v in range(n): print(vec[v])