c\BeginDoc c c\Name: pcneigh c c Message Passing Layer: BLACS c c\Description: c Compute the eigenvalues of the current upper Hessenberg matrix c and the corresponding Ritz estimates given the current residual norm. c c\Usage: c call pcneigh c ( COMM, RNORM, N, H, LDH, RITZ, BOUNDS, Q, LDQ, WORKL, RWORK, IERR ) c c\Arguments c COMM BLACS Communicator for the processor grid. (INPUT) c c RNORM Real scalar. (INPUT) c Residual norm corresponding to the current upper Hessenberg c matrix H. c c N Integer. (INPUT) c Size of the matrix H. c c H Complex N by N array. (INPUT) c H contains the current upper Hessenberg matrix. c c LDH Integer. (INPUT) c Leading dimension of H exactly as declared in the calling c program. c c RITZ Complex array of length N. (OUTPUT) c On output, RITZ(1:N) contains the eigenvalues of H. c c BOUNDS Complex array of length N. (OUTPUT) c On output, BOUNDS contains the Ritz estimates associated with c the eigenvalues held in RITZ. This is equal to RNORM c times the last components of the eigenvectors corresponding c to the eigenvalues in RITZ. c c Q Complex N by N array. (WORKSPACE) c Workspace needed to store the eigenvectors of H. c c LDQ Integer. (INPUT) c Leading dimension of Q exactly as declared in the calling c program. c c WORKL Complex work array of length N**2 + 3*N. (WORKSPACE) c Private (replicated) array on each PE or array allocated on c the front end. This is needed to keep the full Schur form c of H and also in the calculation of the eigenvectors of H. c c RWORK Real work array of length N (WORKSPACE) c Private (replicated) array on each PE or array allocated on c the front end. c c IERR Integer. (OUTPUT) c Error exit flag from clahqr or ctrevc. c c\EndDoc c c----------------------------------------------------------------------- c c\BeginLib c c\Local variables: c xxxxxx Complex c c\Routines called: c pivout Parallel ARPACK utility routine that prints integers. c arscnd ARPACK utility routine for timing. c pcmout Parallel ARPACK utility routine that prints matrices c pcvout Parallel ARPACK utility routine that prints vectors. c psvout Parallel ARPACK utility routine that prints vectors. c clacpy LAPACK matrix copy routine. c clahqr LAPACK routine to compute the Schur form of an c upper Hessenberg matrix. c claset LAPACK matrix initialization routine. c ctrevc LAPACK routine to compute the eigenvectors of a matrix c in upper triangular form c ccopy Level 1 BLAS that copies one vector to another. c csscal Level 1 BLAS that scales a complex vector by a real number. c scnrm2 Level 1 BLAS that computes the norm of a vector. c c c\Author c Danny Sorensen Phuong Vu c Richard Lehoucq CRPC / Rice University c Dept. of Computational & Houston, Texas c Applied Mathematics c Rice University c Houston, Texas c c\Parallel Modifications c Kristi Maschhoff c c\Revision history: c Starting Point: Serial Complex Code FILE: neigh.F SID: 2.1 c c\SCCS Information: c FILE: neigh.F SID: 1.2 DATE OF SID: 4/19/96 c c\Remarks c None c c\EndLib c c----------------------------------------------------------------------- c subroutine pcneigh (comm, rnorm, n, h, ldh, ritz, bounds, & q, ldq, workl, rwork, ierr) c c %--------------------% c | BLACS Communicator | c %--------------------% c integer comm c c %----------------------------------------------------% c | Include files for debugging and timing information | c %----------------------------------------------------% c include 'debug.h' include 'stat.h' c c %------------------% c | Scalar Arguments | c %------------------% c integer ierr, n, ldh, ldq Real & rnorm c c %-----------------% c | Array Arguments | c %-----------------% c Complex & bounds(n), h(ldh,n), q(ldq,n), ritz(n), & workl(n*(n+3)) Real & rwork(n) c c %------------% c | Parameters | c %------------% c Complex & one, zero Real & rone parameter (one = (1.0, 0.0), zero = (0.0, 0.0), & rone = 1.0) c c %------------------------% c | Local Scalars & Arrays | c %------------------------% c logical select(1) integer j, msglvl Complex & vl(1) Real & temp c c %----------------------% c | External Subroutines | c %----------------------% c external clacpy, clahqr, csscal, ctrevc, ccopy, & pcmout, pcvout, arscnd c c %--------------------% c | External Functions | c %--------------------% c Real & scnrm2 external scnrm2 c c %-----------------------% c | Executable Statements | c %-----------------------% c c c %-------------------------------% c | Initialize timing statistics | c | & message level for debugging | c %-------------------------------% c call arscnd (t0) msglvl = mceigh c if (msglvl .gt. 2) then call pcmout (comm, logfil, n, n, h, ldh, ndigit, & '_neigh: Entering upper Hessenberg matrix H ') end if c c %----------------------------------------------------------% c | 1. Compute the eigenvalues, the last components of the | c | corresponding Schur vectors and the full Schur form T | c | of the current upper Hessenberg matrix H. | c | clahqr returns the full Schur form of H | c | in WORKL(1:N**2), and the Schur vectors in q. | c %----------------------------------------------------------% c call clacpy ('All', n, n, h, ldh, workl, n) call claset ('All', n, n, zero, one, q, ldq) call clahqr (.true., .true., n, 1, n, workl, ldh, ritz, & 1, n, q, ldq, ierr) if (ierr .ne. 0) go to 9000 c call ccopy (n, q(n-1,1), ldq, bounds, 1) if (msglvl .gt. 1) then call pcvout (comm, logfil, n, bounds, ndigit, & '_neigh: last row of the Schur matrix for H') end if c c %----------------------------------------------------------% c | 2. Compute the eigenvectors of the full Schur form T and | c | apply the Schur vectors to get the corresponding | c | eigenvectors. | c %----------------------------------------------------------% c call ctrevc ('Right', 'Back', select, n, workl, n, vl, n, q, & ldq, n, n, workl(n*n+1), rwork, ierr) c if (ierr .ne. 0) go to 9000 c c %------------------------------------------------% c | Scale the returning eigenvectors so that their | c | Euclidean norms are all one. LAPACK subroutine | c | ctrevc returns each eigenvector normalized so | c | that the element of largest magnitude has | c | magnitude 1; here the magnitude of a complex | c | number (x,y) is taken to be |x| + |y|. | c %------------------------------------------------% c do 10 j=1, n temp = scnrm2( n, q(1,j), 1 ) call csscal ( n, rone / temp, q(1,j), 1 ) 10 continue c if (msglvl .gt. 1) then call ccopy(n, q(n,1), ldq, workl, 1) call pcvout (comm, logfil, n, workl, ndigit, & '_neigh: Last row of the eigenvector matrix for H') end if c c %----------------------------% c | Compute the Ritz estimates | c %----------------------------% c call ccopy(n, q(n,1), n, bounds, 1) call csscal(n, rnorm, bounds, 1) c if (msglvl .gt. 2) then call pcvout (comm, logfil, n, ritz, ndigit, & '_neigh: The eigenvalues of H') call pcvout (comm, logfil, n, bounds, ndigit, & '_neigh: Ritz estimates for the eigenvalues of H') end if c call arscnd(t1) tceigh = tceigh + (t1 - t0) c 9000 continue return c c %----------------% c | End of pcneigh | c %----------------% c end