c\BeginDoc c c\Name: cnaup2 c c\Description: c Intermediate level interface called by cnaupd. c c\Usage: c call cnaup2 c ( IDO, BMAT, N, WHICH, NEV, NP, TOL, RESID, MODE, IUPD, c ISHIFT, MXITER, V, LDV, H, LDH, RITZ, BOUNDS, c Q, LDQ, WORKL, IPNTR, WORKD, RWORK, INFO ) c c\Arguments c c IDO, BMAT, N, WHICH, NEV, TOL, RESID: same as defined in cnaupd. c MODE, ISHIFT, MXITER: see the definition of IPARAM in cnaupd. c c NP Integer. (INPUT/OUTPUT) c Contains the number of implicit shifts to apply during c each Arnoldi iteration. c If ISHIFT=1, NP is adjusted dynamically at each iteration c to accelerate convergence and prevent stagnation. c This is also roughly equal to the number of matrix-vector c products (involving the operator OP) per Arnoldi iteration. c The logic for adjusting is contained within the current c subroutine. c If ISHIFT=0, NP is the number of shifts the user needs c to provide via reverse communication. 0 < NP < NCV-NEV. c NP may be less than NCV-NEV since a leading block of the current c upper Hessenberg matrix has split off and contains "unwanted" c Ritz values. c Upon termination of the IRA iteration, NP contains the number c of "converged" wanted Ritz values. c c IUPD Integer. (INPUT) c IUPD .EQ. 0: use explicit restart instead implicit update. c IUPD .NE. 0: use implicit update. c c V Complex N by (NEV+NP) array. (INPUT/OUTPUT) c The Arnoldi basis vectors are returned in the first NEV c columns of V. c c LDV Integer. (INPUT) c Leading dimension of V exactly as declared in the calling c program. c c H Complex (NEV+NP) by (NEV+NP) array. (OUTPUT) c H is used to store the generated upper Hessenberg matrix c c LDH Integer. (INPUT) c Leading dimension of H exactly as declared in the calling c program. c c RITZ Complex array of length NEV+NP. (OUTPUT) c RITZ(1:NEV) contains the computed Ritz values of OP. c c BOUNDS Complex array of length NEV+NP. (OUTPUT) c BOUNDS(1:NEV) contain the error bounds corresponding to c the computed Ritz values. c c Q Complex (NEV+NP) by (NEV+NP) array. (WORKSPACE) c Private (replicated) work array used to accumulate the c rotation in the shift application step. c c LDQ Integer. (INPUT) c Leading dimension of Q exactly as declared in the calling c program. c c WORKL Complex work array of length at least c (NEV+NP)**2 + 3*(NEV+NP). (WORKSPACE) c Private (replicated) array on each PE or array allocated on c the front end. It is used in shifts calculation, shifts c application and convergence checking. c c c IPNTR Integer array of length 3. (OUTPUT) c Pointer to mark the starting locations in the WORKD for c vectors used by the Arnoldi iteration. c ------------------------------------------------------------- c IPNTR(1): pointer to the current operand vector X. c IPNTR(2): pointer to the current result vector Y. c IPNTR(3): pointer to the vector B * X when used in the c shift-and-invert mode. X is the current operand. c ------------------------------------------------------------- c c WORKD Complex work array of length 3*N. (WORKSPACE) c Distributed array to be used in the basic Arnoldi iteration c for reverse communication. The user should not use WORKD c as temporary workspace during the iteration !!!!!!!!!! c See Data Distribution Note in CNAUPD. c c RWORK Real work array of length NEV+NP ( WORKSPACE) c Private (replicated) array on each PE or array allocated on c the front end. c c INFO Integer. (INPUT/OUTPUT) c If INFO .EQ. 0, a randomly initial residual vector is used. c If INFO .NE. 0, RESID contains the initial residual vector, c possibly from a previous run. c Error flag on output. c = 0: Normal return. c = 1: Maximum number of iterations taken. c All possible eigenvalues of OP has been found. c NP returns the number of converged Ritz values. c = 2: No shifts could be applied. c = -8: Error return from LAPACK eigenvalue calculation; c This should never happen. c = -9: Starting vector is zero. c = -9999: Could not build an Arnoldi factorization. c Size that was built in returned in NP. c c\EndDoc c c----------------------------------------------------------------------- c c\BeginLib c c\Local variables: c xxxxxx Complex c c\References: c 1. D.C. Sorensen, "Implicit Application of Polynomial Filters in c a k-Step Arnoldi Method", SIAM J. Matr. Anal. Apps., 13 (1992), c pp 357-385. c 2. R.B. Lehoucq, "Analysis and Implementation of an Implicitly c Restarted Arnoldi Iteration", Rice University Technical Report c TR95-13, Department of Computational and Applied Mathematics. c c\Routines called: c cgetv0 ARPACK initial vector generation routine. c cnaitr ARPACK Arnoldi factorization routine. c cnapps ARPACK application of implicit shifts routine. c cneigh ARPACK compute Ritz values and error bounds routine. c cngets ARPACK reorder Ritz values and error bounds routine. c csortc ARPACK sorting routine. c ivout ARPACK utility routine that prints integers. c arscnd ARPACK utility routine for timing. c cmout ARPACK utility routine that prints matrices c cvout ARPACK utility routine that prints vectors. c svout ARPACK utility routine that prints vectors. c slamch LAPACK routine that determines machine constants. c slapy2 LAPACK routine to compute sqrt(x**2+y**2) carefully. c ccopy Level 1 BLAS that copies one vector to another . c cdotc Level 1 BLAS that computes the scalar product of two vectors. c cswap Level 1 BLAS that swaps two vectors. c scnrm2 Level 1 BLAS that computes the norm of a vector. c c\Author c Danny Sorensen Phuong Vu c Richard Lehoucq CRPC / Rice Universitya c Chao Yang Houston, Texas c Dept. of Computational & c Applied Mathematics c Rice University c Houston, Texas c c\SCCS Information: @(#) c FILE: naup2.F SID: 2.6 DATE OF SID: 06/01/00 RELEASE: 2 c c\Remarks c 1. None c c\EndLib c c----------------------------------------------------------------------- c subroutine cnaup2 & ( ido, bmat, n, which, nev, np, tol, resid, mode, iupd, & ishift, mxiter, v, ldv, h, ldh, ritz, bounds, & q, ldq, workl, ipntr, workd, rwork, info ) c c %----------------------------------------------------% c | Include files for debugging and timing information | c %----------------------------------------------------% c include 'debug.h' include 'stat.h' c c %------------------% c | Scalar Arguments | c %------------------% c character bmat*1, which*2 integer ido, info, ishift, iupd, mode, ldh, ldq, ldv, mxiter, & n, nev, np Real & tol c c %-----------------% c | Array Arguments | c %-----------------% c integer ipntr(13) Complex & bounds(nev+np), h(ldh,nev+np), q(ldq,nev+np), & resid(n), ritz(nev+np), v(ldv,nev+np), & workd(3*n), workl( (nev+np)*(nev+np+3) ) Real & rwork(nev+np) c c %------------% c | Parameters | c %------------% c Complex & one, zero Real & rzero parameter (one = (1.0E+0, 0.0E+0) , zero = (0.0E+0, 0.0E+0) , & rzero = 0.0E+0 ) c c %---------------% c | Local Scalars | c %---------------% c logical cnorm , getv0, initv , update, ushift integer ierr , iter , kplusp, msglvl, nconv, & nevbef, nev0 , np0 , nptemp, i , & j Complex & cmpnorm Real & rnorm , eps23, rtemp character wprime*2 c save cnorm, getv0, initv , update, ushift, & rnorm, iter , kplusp, msglvl, nconv , & nevbef, nev0 , np0 , eps23 c c c %-----------------------% c | Local array arguments | c %-----------------------% c integer kp(3) c c %----------------------% c | External Subroutines | c %----------------------% c external ccopy, cgetv0, cnaitr, cneigh, cngets, cnapps, & csortc, cswap, cmout, cvout, ivout, arscnd c c %--------------------% c | External functions | c %--------------------% c Complex & cdotc Real & scnrm2, slamch, slapy2 external cdotc, scnrm2, slamch, slapy2 c c %---------------------% c | Intrinsic Functions | c %---------------------% c intrinsic aimag, real , min, max c c %-----------------------% c | Executable Statements | c %-----------------------% c if (ido .eq. 0) then c call arscnd (t0) c msglvl = mcaup2 c nev0 = nev np0 = np c c %-------------------------------------% c | kplusp is the bound on the largest | c | Lanczos factorization built. | c | nconv is the current number of | c | "converged" eigenvalues. | c | iter is the counter on the current | c | iteration step. | c %-------------------------------------% c kplusp = nev + np nconv = 0 iter = 0 c c %---------------------------------% c | Get machine dependent constant. | c %---------------------------------% c eps23 = slamch('Epsilon-Machine') eps23 = eps23**(2.0E+0 / 3.0E+0 ) c c %---------------------------------------% c | Set flags for computing the first NEV | c | steps of the Arnoldi factorization. | c %---------------------------------------% c getv0 = .true. update = .false. ushift = .false. cnorm = .false. c if (info .ne. 0) then c c %--------------------------------------------% c | User provides the initial residual vector. | c %--------------------------------------------% c initv = .true. info = 0 else initv = .false. end if end if c c %---------------------------------------------% c | Get a possibly random starting vector and | c | force it into the range of the operator OP. | c %---------------------------------------------% c 10 continue c if (getv0) then call cgetv0 (ido, bmat, 1, initv, n, 1, v, ldv, resid, rnorm, & ipntr, workd, info) c if (ido .ne. 99) go to 9000 c if (rnorm .eq. rzero) then c c %-----------------------------------------% c | The initial vector is zero. Error exit. | c %-----------------------------------------% c info = -9 go to 1100 end if getv0 = .false. ido = 0 end if c c %-----------------------------------% c | Back from reverse communication : | c | continue with update step | c %-----------------------------------% c if (update) go to 20 c c %-------------------------------------------% c | Back from computing user specified shifts | c %-------------------------------------------% c if (ushift) go to 50 c c %-------------------------------------% c | Back from computing residual norm | c | at the end of the current iteration | c %-------------------------------------% c if (cnorm) go to 100 c c %----------------------------------------------------------% c | Compute the first NEV steps of the Arnoldi factorization | c %----------------------------------------------------------% c call cnaitr (ido, bmat, n, 0, nev, mode, resid, rnorm, v, ldv, & h, ldh, ipntr, workd, info) c if (ido .ne. 99) go to 9000 c if (info .gt. 0) then np = info mxiter = iter info = -9999 go to 1200 end if c c %--------------------------------------------------------------% c | | c | M A I N ARNOLDI I T E R A T I O N L O O P | c | Each iteration implicitly restarts the Arnoldi | c | factorization in place. | c | | c %--------------------------------------------------------------% c 1000 continue c iter = iter + 1 c if (msglvl .gt. 0) then call ivout (logfil, 1, [iter], ndigit, & '_naup2: **** Start of major iteration number ****') end if c c %-----------------------------------------------------------% c | Compute NP additional steps of the Arnoldi factorization. | c | Adjust NP since NEV might have been updated by last call | c | to the shift application routine cnapps. | c %-----------------------------------------------------------% c np = kplusp - nev c if (msglvl .gt. 1) then call ivout (logfil, 1, [nev], ndigit, & '_naup2: The length of the current Arnoldi factorization') call ivout (logfil, 1, [np], ndigit, & '_naup2: Extend the Arnoldi factorization by') end if c c %-----------------------------------------------------------% c | Compute NP additional steps of the Arnoldi factorization. | c %-----------------------------------------------------------% c ido = 0 20 continue update = .true. c call cnaitr(ido, bmat, n, nev, np, mode, resid, rnorm, & v , ldv , h, ldh, ipntr, workd, info) c if (ido .ne. 99) go to 9000 c if (info .gt. 0) then np = info mxiter = iter info = -9999 go to 1200 end if update = .false. c if (msglvl .gt. 1) then call svout (logfil, 1, [rnorm], ndigit, & '_naup2: Corresponding B-norm of the residual') end if c c %--------------------------------------------------------% c | Compute the eigenvalues and corresponding error bounds | c | of the current upper Hessenberg matrix. | c %--------------------------------------------------------% c call cneigh (rnorm, kplusp, h, ldh, ritz, bounds, & q, ldq, workl, rwork, ierr) c if (ierr .ne. 0) then info = -8 go to 1200 end if c c %---------------------------------------------------% c | Select the wanted Ritz values and their bounds | c | to be used in the convergence test. | c | The wanted part of the spectrum and corresponding | c | error bounds are in the last NEV loc. of RITZ, | c | and BOUNDS respectively. | c %---------------------------------------------------% c nev = nev0 np = np0 c c %--------------------------------------------------% c | Make a copy of Ritz values and the corresponding | c | Ritz estimates obtained from cneigh. | c %--------------------------------------------------% c call ccopy(kplusp,ritz,1,workl(kplusp**2+1),1) call ccopy(kplusp,bounds,1,workl(kplusp**2+kplusp+1),1) c c %---------------------------------------------------% c | Select the wanted Ritz values and their bounds | c | to be used in the convergence test. | c | The wanted part of the spectrum and corresponding | c | bounds are in the last NEV loc. of RITZ | c | BOUNDS respectively. | c %---------------------------------------------------% c call cngets (ishift, which, nev, np, ritz, bounds) c c %------------------------------------------------------------% c | Convergence test: currently we use the following criteria. | c | The relative accuracy of a Ritz value is considered | c | acceptable if: | c | | c | error_bounds(i) .le. tol*max(eps23, magnitude_of_ritz(i)). | c | | c %------------------------------------------------------------% c nconv = 0 c do 25 i = 1, nev rtemp = max( eps23, slapy2( real (ritz(np+i)), & aimag(ritz(np+i)) ) ) if ( slapy2(real (bounds(np+i)),aimag(bounds(np+i))) & .le. tol*rtemp ) then nconv = nconv + 1 end if 25 continue c if (msglvl .gt. 2) then kp(1) = nev kp(2) = np kp(3) = nconv call ivout (logfil, 3, kp, ndigit, & '_naup2: NEV, NP, NCONV are') call cvout (logfil, kplusp, ritz, ndigit, & '_naup2: The eigenvalues of H') call cvout (logfil, kplusp, bounds, ndigit, & '_naup2: Ritz estimates of the current NCV Ritz values') end if c c %---------------------------------------------------------% c | Count the number of unwanted Ritz values that have zero | c | Ritz estimates. If any Ritz estimates are equal to zero | c | then a leading block of H of order equal to at least | c | the number of Ritz values with zero Ritz estimates has | c | split off. None of these Ritz values may be removed by | c | shifting. Decrease NP the number of shifts to apply. If | c | no shifts may be applied, then prepare to exit | c %---------------------------------------------------------% c nptemp = np do 30 j=1, nptemp if (bounds(j) .eq. zero) then np = np - 1 nev = nev + 1 end if 30 continue c if ( (nconv .ge. nev0) .or. & (iter .gt. mxiter) .or. & (np .eq. 0) ) then c if (msglvl .gt. 4) then call cvout(logfil, kplusp, workl(kplusp**2+1), ndigit, & '_naup2: Eigenvalues computed by _neigh:') call cvout(logfil, kplusp, workl(kplusp**2+kplusp+1), & ndigit, & '_naup2: Ritz estimates computed by _neigh:') end if c c %------------------------------------------------% c | Prepare to exit. Put the converged Ritz values | c | and corresponding bounds in RITZ(1:NCONV) and | c | BOUNDS(1:NCONV) respectively. Then sort. Be | c | careful when NCONV > NP | c %------------------------------------------------% c c %------------------------------------------% c | Use h( 3,1 ) as storage to communicate | c | rnorm to cneupd if needed | c %------------------------------------------% h(3,1) = cmplx(rnorm,rzero) c c %----------------------------------------------% c | Sort Ritz values so that converged Ritz | c | values appear within the first NEV locations | c | of ritz and bounds, and the most desired one | c | appears at the front. | c %----------------------------------------------% c if (which .eq. 'LM') wprime = 'SM' if (which .eq. 'SM') wprime = 'LM' if (which .eq. 'LR') wprime = 'SR' if (which .eq. 'SR') wprime = 'LR' if (which .eq. 'LI') wprime = 'SI' if (which .eq. 'SI') wprime = 'LI' c call csortc(wprime, .true., kplusp, ritz, bounds) c c %--------------------------------------------------% c | Scale the Ritz estimate of each Ritz value | c | by 1 / max(eps23, magnitude of the Ritz value). | c %--------------------------------------------------% c do 35 j = 1, nev0 rtemp = max( eps23, slapy2( real (ritz(j)), & aimag(ritz(j)) ) ) bounds(j) = bounds(j)/rtemp 35 continue c c %---------------------------------------------------% c | Sort the Ritz values according to the scaled Ritz | c | estimates. This will push all the converged ones | c | towards the front of ritz, bounds (in the case | c | when NCONV < NEV.) | c %---------------------------------------------------% c wprime = 'LM' call csortc(wprime, .true., nev0, bounds, ritz) c c %----------------------------------------------% c | Scale the Ritz estimate back to its original | c | value. | c %----------------------------------------------% c do 40 j = 1, nev0 rtemp = max( eps23, slapy2( real (ritz(j)), & aimag(ritz(j)) ) ) bounds(j) = bounds(j)*rtemp 40 continue c c %-----------------------------------------------% c | Sort the converged Ritz values again so that | c | the "threshold" value appears at the front of | c | ritz and bound. | c %-----------------------------------------------% c call csortc(which, .true., nconv, ritz, bounds) c if (msglvl .gt. 1) then call cvout (logfil, kplusp, ritz, ndigit, & '_naup2: Sorted eigenvalues') call cvout (logfil, kplusp, bounds, ndigit, & '_naup2: Sorted ritz estimates.') end if c c %------------------------------------% c | Max iterations have been exceeded. | c %------------------------------------% c if (iter .gt. mxiter .and. nconv .lt. nev0) info = 1 c c %---------------------% c | No shifts to apply. | c %---------------------% c if (np .eq. 0 .and. nconv .lt. nev0) info = 2 c np = nconv go to 1100 c else if ( (nconv .lt. nev0) .and. (ishift .eq. 1) ) then c c %-------------------------------------------------% c | Do not have all the requested eigenvalues yet. | c | To prevent possible stagnation, adjust the size | c | of NEV. | c %-------------------------------------------------% c nevbef = nev nev = nev + min(nconv, np/2) if (nev .eq. 1 .and. kplusp .ge. 6) then nev = kplusp / 2 else if (nev .eq. 1 .and. kplusp .gt. 3) then nev = 2 end if np = kplusp - nev c c %---------------------------------------% c | If the size of NEV was just increased | c | resort the eigenvalues. | c %---------------------------------------% c if (nevbef .lt. nev) & call cngets (ishift, which, nev, np, ritz, bounds) c end if c if (msglvl .gt. 0) then call ivout (logfil, 1, [nconv], ndigit, & '_naup2: no. of "converged" Ritz values at this iter.') if (msglvl .gt. 1) then kp(1) = nev kp(2) = np call ivout (logfil, 2, kp, ndigit, & '_naup2: NEV and NP are') call cvout (logfil, nev, ritz(np+1), ndigit, & '_naup2: "wanted" Ritz values ') call cvout (logfil, nev, bounds(np+1), ndigit, & '_naup2: Ritz estimates of the "wanted" values ') end if end if c if (ishift .eq. 0) then c c %-------------------------------------------------------% c | User specified shifts: pop back out to get the shifts | c | and return them in the first 2*NP locations of WORKL. | c %-------------------------------------------------------% c ushift = .true. ido = 3 go to 9000 end if 50 continue ushift = .false. c if ( ishift .ne. 1 ) then c c %----------------------------------% c | Move the NP shifts from WORKL to | c | RITZ, to free up WORKL | c | for non-exact shift case. | c %----------------------------------% c call ccopy (np, workl, 1, ritz, 1) end if c if (msglvl .gt. 2) then call ivout (logfil, 1, [np], ndigit, & '_naup2: The number of shifts to apply ') call cvout (logfil, np, ritz, ndigit, & '_naup2: values of the shifts') if ( ishift .eq. 1 ) & call cvout (logfil, np, bounds, ndigit, & '_naup2: Ritz estimates of the shifts') end if c c %---------------------------------------------------------% c | Apply the NP implicit shifts by QR bulge chasing. | c | Each shift is applied to the whole upper Hessenberg | c | matrix H. | c | The first 2*N locations of WORKD are used as workspace. | c %---------------------------------------------------------% c call cnapps (n, nev, np, ritz, v, ldv, & h, ldh, resid, q, ldq, workl, workd) c c %---------------------------------------------% c | Compute the B-norm of the updated residual. | c | Keep B*RESID in WORKD(1:N) to be used in | c | the first step of the next call to cnaitr. | c %---------------------------------------------% c cnorm = .true. call arscnd (t2) if (bmat .eq. 'G') then nbx = nbx + 1 call ccopy (n, resid, 1, workd(n+1), 1) ipntr(1) = n + 1 ipntr(2) = 1 ido = 2 c c %----------------------------------% c | Exit in order to compute B*RESID | c %----------------------------------% c go to 9000 else if (bmat .eq. 'I') then call ccopy (n, resid, 1, workd, 1) end if c 100 continue c c %----------------------------------% c | Back from reverse communication; | c | WORKD(1:N) := B*RESID | c %----------------------------------% c if (bmat .eq. 'G') then call arscnd (t3) tmvbx = tmvbx + (t3 - t2) end if c if (bmat .eq. 'G') then cmpnorm = cdotc (n, resid, 1, workd, 1) rnorm = sqrt(slapy2(real (cmpnorm),aimag(cmpnorm))) else if (bmat .eq. 'I') then rnorm = scnrm2(n, resid, 1) end if cnorm = .false. c if (msglvl .gt. 2) then call svout (logfil, 1, [rnorm], ndigit, & '_naup2: B-norm of residual for compressed factorization') call cmout (logfil, nev, nev, h, ldh, ndigit, & '_naup2: Compressed upper Hessenberg matrix H') end if c go to 1000 c c %---------------------------------------------------------------% c | | c | E N D O F M A I N I T E R A T I O N L O O P | c | | c %---------------------------------------------------------------% c 1100 continue c mxiter = iter nev = nconv c 1200 continue ido = 99 c c %------------% c | Error Exit | c %------------% c call arscnd (t1) tcaup2 = t1 - t0 c 9000 continue c c %---------------% c | End of cnaup2 | c %---------------% c return end