c\BeginDoc c c\Name: cneupd c c\Description: c This subroutine returns the converged approximations to eigenvalues c of A*z = lambda*B*z and (optionally): c c (1) The corresponding approximate eigenvectors; c c (2) An orthonormal basis for the associated approximate c invariant subspace; c c (3) Both. c c There is negligible additional cost to obtain eigenvectors. An orthonormal c basis is always computed. There is an additional storage cost of n*nev c if both are requested (in this case a separate array Z must be supplied). c c The approximate eigenvalues and eigenvectors of A*z = lambda*B*z c are derived from approximate eigenvalues and eigenvectors of c of the linear operator OP prescribed by the MODE selection in the c call to CNAUPD. CNAUPD must be called before this routine is called. c These approximate eigenvalues and vectors are commonly called Ritz c values and Ritz vectors respectively. They are referred to as such c in the comments that follow. The computed orthonormal basis for the c invariant subspace corresponding to these Ritz values is referred to as a c Schur basis. c c The definition of OP as well as other terms and the relation of computed c Ritz values and vectors of OP with respect to the given problem c A*z = lambda*B*z may be found in the header of CNAUPD. For a brief c description, see definitions of IPARAM(7), MODE and WHICH in the c documentation of CNAUPD. c c\Usage: c call cneupd c ( RVEC, HOWMNY, SELECT, D, Z, LDZ, SIGMA, WORKEV, BMAT, c N, WHICH, NEV, TOL, RESID, NCV, V, LDV, IPARAM, IPNTR, WORKD, c WORKL, LWORKL, RWORK, INFO ) c c\Arguments: c RVEC LOGICAL (INPUT) c Specifies whether a basis for the invariant subspace corresponding c to the converged Ritz value approximations for the eigenproblem c A*z = lambda*B*z is computed. c c RVEC = .FALSE. Compute Ritz values only. c c RVEC = .TRUE. Compute Ritz vectors or Schur vectors. c See Remarks below. c c HOWMNY Character*1 (INPUT) c Specifies the form of the basis for the invariant subspace c corresponding to the converged Ritz values that is to be computed. c c = 'A': Compute NEV Ritz vectors; c = 'P': Compute NEV Schur vectors; c = 'S': compute some of the Ritz vectors, specified c by the logical array SELECT. c c SELECT Logical array of dimension NCV. (INPUT) c If HOWMNY = 'S', SELECT specifies the Ritz vectors to be c computed. To select the Ritz vector corresponding to a c Ritz value D(j), SELECT(j) must be set to .TRUE.. c If HOWMNY = 'A' or 'P', SELECT need not be initialized c but it is used as internal workspace. c c D Complex array of dimension NEV+1. (OUTPUT) c On exit, D contains the Ritz approximations c to the eigenvalues lambda for A*z = lambda*B*z. c c Z Complex N by NEV array (OUTPUT) c On exit, if RVEC = .TRUE. and HOWMNY = 'A', then the columns of c Z represents approximate eigenvectors (Ritz vectors) corresponding c to the NCONV=IPARAM(5) Ritz values for eigensystem c A*z = lambda*B*z. c c If RVEC = .FALSE. or HOWMNY = 'P', then Z is NOT REFERENCED. c c NOTE: If if RVEC = .TRUE. and a Schur basis is not required, c the array Z may be set equal to first NEV+1 columns of the Arnoldi c basis array V computed by CNAUPD. In this case the Arnoldi basis c will be destroyed and overwritten with the eigenvector basis. c c LDZ Integer. (INPUT) c The leading dimension of the array Z. If Ritz vectors are c desired, then LDZ .ge. max( 1, N ) is required. c In any case, LDZ .ge. 1 is required. c c SIGMA Complex (INPUT) c If IPARAM(7) = 3 then SIGMA represents the shift. c Not referenced if IPARAM(7) = 1 or 2. c c WORKEV Complex work array of dimension 2*NCV. (WORKSPACE) c c **** The remaining arguments MUST be the same as for the **** c **** call to CNAUPD that was just completed. **** c c NOTE: The remaining arguments c c BMAT, N, WHICH, NEV, TOL, RESID, NCV, V, LDV, IPARAM, IPNTR, c WORKD, WORKL, LWORKL, RWORK, INFO c c must be passed directly to CNEUPD following the last call c to CNAUPD. These arguments MUST NOT BE MODIFIED between c the the last call to CNAUPD and the call to CNEUPD. c c Three of these parameters (V, WORKL and INFO) are also output parameters: c c V Complex N by NCV array. (INPUT/OUTPUT) c c Upon INPUT: the NCV columns of V contain the Arnoldi basis c vectors for OP as constructed by CNAUPD . c c Upon OUTPUT: If RVEC = .TRUE. the first NCONV=IPARAM(5) columns c contain approximate Schur vectors that span the c desired invariant subspace. c c NOTE: If the array Z has been set equal to first NEV+1 columns c of the array V and RVEC=.TRUE. and HOWMNY= 'A', then the c Arnoldi basis held by V has been overwritten by the desired c Ritz vectors. If a separate array Z has been passed then c the first NCONV=IPARAM(5) columns of V will contain approximate c Schur vectors that span the desired invariant subspace. c c WORKL Real work array of length LWORKL. (OUTPUT/WORKSPACE) c WORKL(1:ncv*ncv+2*ncv) contains information obtained in c cnaupd. They are not changed by cneupd. c WORKL(ncv*ncv+2*ncv+1:3*ncv*ncv+4*ncv) holds the c untransformed Ritz values, the untransformed error estimates of c the Ritz values, the upper triangular matrix for H, and the c associated matrix representation of the invariant subspace for H. c c Note: IPNTR(9:13) contains the pointer into WORKL for addresses c of the above information computed by cneupd. c ------------------------------------------------------------- c IPNTR(9): pointer to the NCV RITZ values of the c original system. c IPNTR(10): Not used c IPNTR(11): pointer to the NCV corresponding error estimates. c IPNTR(12): pointer to the NCV by NCV upper triangular c Schur matrix for H. c IPNTR(13): pointer to the NCV by NCV matrix of eigenvectors c of the upper Hessenberg matrix H. Only referenced by c cneupd if RVEC = .TRUE. See Remark 2 below. c ------------------------------------------------------------- c c INFO Integer. (OUTPUT) c Error flag on output. c = 0: Normal exit. c c = 1: The Schur form computed by LAPACK routine csheqr c could not be reordered by LAPACK routine ctrsen. c Re-enter subroutine cneupd with IPARAM(5)=NCV and c increase the size of the array D to have c dimension at least dimension NCV and allocate at least NCV c columns for Z. NOTE: Not necessary if Z and V share c the same space. Please notify the authors if this error c occurs. c c = -1: N must be positive. c = -2: NEV must be positive. c = -3: NCV-NEV >= 2 and less than or equal to N. c = -5: WHICH must be one of 'LM', 'SM', 'LR', 'SR', 'LI', 'SI' c = -6: BMAT must be one of 'I' or 'G'. c = -7: Length of private work WORKL array is not sufficient. c = -8: Error return from LAPACK eigenvalue calculation. c This should never happened. c = -9: Error return from calculation of eigenvectors. c Informational error from LAPACK routine ctrevc. c = -10: IPARAM(7) must be 1,2,3 c = -11: IPARAM(7) = 1 and BMAT = 'G' are incompatible. c = -12: HOWMNY = 'S' not yet implemented c = -13: HOWMNY must be one of 'A' or 'P' if RVEC = .true. c = -14: CNAUPD did not find any eigenvalues to sufficient c accuracy. c = -15: CNEUPD got a different count of the number of converged c Ritz values than CNAUPD got. This indicates the user c probably made an error in passing data from CNAUPD to c CNEUPD or that the data was modified before entering c CNEUPD c c\BeginLib c c\References: c 1. D.C. Sorensen, "Implicit Application of Polynomial Filters in c a k-Step Arnoldi Method", SIAM J. Matr. Anal. Apps., 13 (1992), c pp 357-385. c 2. R.B. Lehoucq, "Analysis and Implementation of an Implicitly c Restarted Arnoldi Iteration", Rice University Technical Report c TR95-13, Department of Computational and Applied Mathematics. c 3. B. Nour-Omid, B. N. Parlett, T. Ericsson and P. S. Jensen, c "How to Implement the Spectral Transformation", Math Comp., c Vol. 48, No. 178, April, 1987 pp. 664-673. c c\Routines called: c ivout ARPACK utility routine that prints integers. c cmout ARPACK utility routine that prints matrices c cvout ARPACK utility routine that prints vectors. c cgeqr2 LAPACK routine that computes the QR factorization of c a matrix. c clacpy LAPACK matrix copy routine. c clahqr LAPACK routine that computes the Schur form of a c upper Hessenberg matrix. c claset LAPACK matrix initialization routine. c ctrevc LAPACK routine to compute the eigenvectors of a matrix c in upper triangular form. c ctrsen LAPACK routine that re-orders the Schur form. c cunm2r LAPACK routine that applies an orthogonal matrix in c factored form. c slamch LAPACK routine that determines machine constants. c ctrmm Level 3 BLAS matrix times an upper triangular matrix. c cgeru Level 2 BLAS rank one update to a matrix. c ccopy Level 1 BLAS that copies one vector to another . c cscal Level 1 BLAS that scales a vector. c csscal Level 1 BLAS that scales a complex vector by a real number. c scnrm2 Level 1 BLAS that computes the norm of a complex vector. c c\Remarks c c 1. Currently only HOWMNY = 'A' and 'P' are implemented. c c 2. Schur vectors are an orthogonal representation for the basis of c Ritz vectors. Thus, their numerical properties are often superior. c If RVEC = .true. then the relationship c A * V(:,1:IPARAM(5)) = V(:,1:IPARAM(5)) * T, and c transpose( V(:,1:IPARAM(5)) ) * V(:,1:IPARAM(5)) = I c are approximately satisfied. c Here T is the leading submatrix of order IPARAM(5) of the c upper triangular matrix stored workl(ipntr(12)). c c\Authors c Danny Sorensen Phuong Vu c Richard Lehoucq CRPC / Rice University c Chao Yang Houston, Texas c Dept. of Computational & c Applied Mathematics c Rice University c Houston, Texas c c\SCCS Information: @(#) c FILE: neupd.F SID: 2.7 DATE OF SID: 09/20/00 RELEASE: 2 c c\EndLib c c----------------------------------------------------------------------- subroutine cneupd(rvec , howmny, select, d , & z , ldz , sigma , workev, & bmat , n , which , nev , & tol , resid , ncv , v , & ldv , iparam, ipntr , workd , & workl, lworkl, rwork , info ) c c %----------------------------------------------------% c | Include files for debugging and timing information | c %----------------------------------------------------% c include 'debug.h' include 'stat.h' c c %------------------% c | Scalar Arguments | c %------------------% c character bmat, howmny, which*2 logical rvec integer info, ldz, ldv, lworkl, n, ncv, nev Complex & sigma Real & tol c c %-----------------% c | Array Arguments | c %-----------------% c integer iparam(11), ipntr(14) logical select(ncv) Real & rwork(ncv) Complex & d(nev) , resid(n) , v(ldv,ncv), & z(ldz, nev), & workd(3*n) , workl(lworkl), workev(2*ncv) c c %------------% c | Parameters | c %------------% c Complex & one, zero parameter (one = (1.0E+0, 0.0E+0), zero = (0.0E+0, 0.0E+0)) c c %---------------% c | Local Scalars | c %---------------% c character type*6 integer bounds, ierr , ih , ihbds, iheig , nconv , & invsub, iuptri, iwev , j , ldh , ldq , & mode , msglvl, ritz , wr , k , irz , & ibd , outncv, iq , np , numcnv, jj , & ishift, nconv2 Complex & rnorm, temp, vl(1) Real & conds, sep, rtemp, eps23 logical reord c c %----------------------% c | External Subroutines | c %----------------------% c external ccopy , cgeru, cgeqr2, clacpy, cmout, & cunm2r, ctrmm, cvout, ivout, & clahqr c c %--------------------% c | External Functions | c %--------------------% c Real & scnrm2, slamch, slapy2 external scnrm2, slamch, slapy2 c Complex & cdotc external cdotc c c %-----------------------% c | Executable Statements | c %-----------------------% c c %------------------------% c | Set default parameters | c %------------------------% c msglvl = mceupd mode = iparam(7) nconv = iparam(5) info = 0 c c c %---------------------------------% c | Get machine dependent constant. | c %---------------------------------% c eps23 = slamch('Epsilon-Machine') eps23 = eps23**(2.0E+0 / 3.0E+0) c c %-------------------------------% c | Quick return | c | Check for incompatible input | c %-------------------------------% c ierr = 0 c if (nconv .le. 0) then ierr = -14 else if (n .le. 0) then ierr = -1 else if (nev .le. 0) then ierr = -2 else if (ncv .le. nev+1 .or. ncv .gt. n) then ierr = -3 else if (which .ne. 'LM' .and. & which .ne. 'SM' .and. & which .ne. 'LR' .and. & which .ne. 'SR' .and. & which .ne. 'LI' .and. & which .ne. 'SI') then ierr = -5 else if (bmat .ne. 'I' .and. bmat .ne. 'G') then ierr = -6 else if (lworkl .lt. 3*ncv**2 + 4*ncv) then ierr = -7 else if ( (howmny .ne. 'A' .and. & howmny .ne. 'P' .and. & howmny .ne. 'S') .and. rvec ) then ierr = -13 else if (howmny .eq. 'S' ) then ierr = -12 end if c if (mode .eq. 1 .or. mode .eq. 2) then type = 'REGULR' else if (mode .eq. 3 ) then type = 'SHIFTI' else ierr = -10 end if if (mode .eq. 1 .and. bmat .eq. 'G') ierr = -11 c c %------------% c | Error Exit | c %------------% c if (ierr .ne. 0) then info = ierr go to 9000 end if c c %--------------------------------------------------------% c | Pointer into WORKL for address of H, RITZ, WORKEV, Q | c | etc... and the remaining workspace. | c | Also update pointer to be used on output. | c | Memory is laid out as follows: | c | workl(1:ncv*ncv) := generated Hessenberg matrix | c | workl(ncv*ncv+1:ncv*ncv+ncv) := ritz values | c | workl(ncv*ncv+ncv+1:ncv*ncv+2*ncv) := error bounds | c %--------------------------------------------------------% c c %-----------------------------------------------------------% c | The following is used and set by CNEUPD. | c | workl(ncv*ncv+2*ncv+1:ncv*ncv+3*ncv) := The untransformed | c | Ritz values. | c | workl(ncv*ncv+3*ncv+1:ncv*ncv+4*ncv) := The untransformed | c | error bounds of | c | the Ritz values | c | workl(ncv*ncv+4*ncv+1:2*ncv*ncv+4*ncv) := Holds the upper | c | triangular matrix | c | for H. | c | workl(2*ncv*ncv+4*ncv+1: 3*ncv*ncv+4*ncv) := Holds the | c | associated matrix | c | representation of | c | the invariant | c | subspace for H. | c | GRAND total of NCV * ( 3 * NCV + 4 ) locations. | c %-----------------------------------------------------------% c ih = ipntr(5) ritz = ipntr(6) iq = ipntr(7) bounds = ipntr(8) ldh = ncv ldq = ncv iheig = bounds + ldh ihbds = iheig + ldh iuptri = ihbds + ldh invsub = iuptri + ldh*ncv ipntr(9) = iheig ipntr(11) = ihbds ipntr(12) = iuptri ipntr(13) = invsub wr = 1 iwev = wr + ncv c c %-----------------------------------------% c | irz points to the Ritz values computed | c | by _neigh before exiting _naup2. | c | ibd points to the Ritz estimates | c | computed by _neigh before exiting | c | _naup2. | c %-----------------------------------------% c irz = ipntr(14) + ncv*ncv ibd = irz + ncv c c %------------------------------------% c | RNORM is B-norm of the RESID(1:N). | c %------------------------------------% c rnorm = workl(ih+2) workl(ih+2) = zero c if (msglvl .gt. 2) then call cvout(logfil, ncv, workl(irz), ndigit, & '_neupd: Ritz values passed in from _NAUPD.') call cvout(logfil, ncv, workl(ibd), ndigit, & '_neupd: Ritz estimates passed in from _NAUPD.') end if c if (rvec) then c reord = .false. c c %---------------------------------------------------% c | Use the temporary bounds array to store indices | c | These will be used to mark the select array later | c %---------------------------------------------------% c do 10 j = 1,ncv workl(bounds+j-1) = j select(j) = .false. 10 continue c c %-------------------------------------% c | Select the wanted Ritz values. | c | Sort the Ritz values so that the | c | wanted ones appear at the tailing | c | NEV positions of workl(irr) and | c | workl(iri). Move the corresponding | c | error estimates in workl(ibd) | c | accordingly. | c %-------------------------------------% c np = ncv - nev ishift = 0 call cngets(ishift, which , nev , & np , workl(irz), workl(bounds)) c if (msglvl .gt. 2) then call cvout (logfil, ncv, workl(irz), ndigit, & '_neupd: Ritz values after calling _NGETS.') call cvout (logfil, ncv, workl(bounds), ndigit, & '_neupd: Ritz value indices after calling _NGETS.') end if c c %-----------------------------------------------------% c | Record indices of the converged wanted Ritz values | c | Mark the select array for possible reordering | c %-----------------------------------------------------% c numcnv = 0 do 11 j = 1,ncv rtemp = max(eps23, & slapy2 ( real(workl(irz+ncv-j)), & aimag(workl(irz+ncv-j)) )) jj = workl(bounds + ncv - j) if (numcnv .lt. nconv .and. & slapy2( real(workl(ibd+jj-1)), & aimag(workl(ibd+jj-1)) ) & .le. tol*rtemp) then select(jj) = .true. numcnv = numcnv + 1 if (jj .gt. nconv) reord = .true. endif 11 continue c c %-----------------------------------------------------------% c | Check the count (numcnv) of converged Ritz values with | c | the number (nconv) reported by dnaupd. If these two | c | are different then there has probably been an error | c | caused by incorrect passing of the dnaupd data. | c %-----------------------------------------------------------% c if (msglvl .gt. 2) then call ivout(logfil, 1, [numcnv], ndigit, & '_neupd: Number of specified eigenvalues') call ivout(logfil, 1, [nconv], ndigit, & '_neupd: Number of "converged" eigenvalues') end if c if (numcnv .ne. nconv) then info = -15 go to 9000 end if c c %-------------------------------------------------------% c | Call LAPACK routine clahqr to compute the Schur form | c | of the upper Hessenberg matrix returned by CNAUPD. | c | Make a copy of the upper Hessenberg matrix. | c | Initialize the Schur vector matrix Q to the identity. | c %-------------------------------------------------------% c call ccopy(ldh*ncv, workl(ih), 1, workl(iuptri), 1) call claset('All', ncv, ncv , & zero , one, workl(invsub), & ldq) call clahqr(.true., .true. , ncv , & 1 , ncv , workl(iuptri), & ldh , workl(iheig) , 1 , & ncv , workl(invsub), ldq , & ierr) call ccopy(ncv , workl(invsub+ncv-1), ldq, & workl(ihbds), 1) c if (ierr .ne. 0) then info = -8 go to 9000 end if c if (msglvl .gt. 1) then call cvout (logfil, ncv, workl(iheig), ndigit, & '_neupd: Eigenvalues of H') call cvout (logfil, ncv, workl(ihbds), ndigit, & '_neupd: Last row of the Schur vector matrix') if (msglvl .gt. 3) then call cmout (logfil , ncv, ncv , & workl(iuptri), ldh, ndigit, & '_neupd: The upper triangular matrix ') end if end if c if (reord) then c c %-----------------------------------------------% c | Reorder the computed upper triangular matrix. | c %-----------------------------------------------% c call ctrsen('None' , 'V' , select , & ncv , workl(iuptri), ldh , & workl(invsub), ldq , workl(iheig), & nconv2 , conds , sep , & workev , ncv , ierr) c if (nconv2 .lt. nconv) then nconv = nconv2 end if if (ierr .eq. 1) then info = 1 go to 9000 end if c if (msglvl .gt. 2) then call cvout (logfil, ncv, workl(iheig), ndigit, & '_neupd: Eigenvalues of H--reordered') if (msglvl .gt. 3) then call cmout(logfil , ncv, ncv , & workl(iuptri), ldq, ndigit, & '_neupd: Triangular matrix after re-ordering') end if end if c end if c c %---------------------------------------------% c | Copy the last row of the Schur basis matrix | c | to workl(ihbds). This vector will be used | c | to compute the Ritz estimates of converged | c | Ritz values. | c %---------------------------------------------% c call ccopy(ncv , workl(invsub+ncv-1), ldq, & workl(ihbds), 1) c c %--------------------------------------------% c | Place the computed eigenvalues of H into D | c | if a spectral transformation was not used. | c %--------------------------------------------% c if (type .eq. 'REGULR') then call ccopy(nconv, workl(iheig), 1, d, 1) end if c c %----------------------------------------------------------% c | Compute the QR factorization of the matrix representing | c | the wanted invariant subspace located in the first NCONV | c | columns of workl(invsub,ldq). | c %----------------------------------------------------------% c call cgeqr2(ncv , nconv , workl(invsub), & ldq , workev, workev(ncv+1), & ierr) c c %--------------------------------------------------------% c | * Postmultiply V by Q using cunm2r. | c | * Copy the first NCONV columns of VQ into Z. | c | * Postmultiply Z by R. | c | The N by NCONV matrix Z is now a matrix representation | c | of the approximate invariant subspace associated with | c | the Ritz values in workl(iheig). The first NCONV | c | columns of V are now approximate Schur vectors | c | associated with the upper triangular matrix of order | c | NCONV in workl(iuptri). | c %--------------------------------------------------------% c call cunm2r('Right', 'Notranspose', n , & ncv , nconv , workl(invsub), & ldq , workev , v , & ldv , workd(n+1) , ierr) call clacpy('All', n, nconv, v, ldv, z, ldz) c do 20 j=1, nconv c c %---------------------------------------------------% c | Perform both a column and row scaling if the | c | diagonal element of workl(invsub,ldq) is negative | c | I'm lazy and don't take advantage of the upper | c | triangular form of workl(iuptri,ldq). | c | Note that since Q is orthogonal, R is a diagonal | c | matrix consisting of plus or minus ones. | c %---------------------------------------------------% c if ( real( workl(invsub+(j-1)*ldq+j-1) ) .lt. & real(zero) ) then call cscal(nconv, -one, workl(iuptri+j-1), ldq) call cscal(nconv, -one, workl(iuptri+(j-1)*ldq), 1) end if c 20 continue c if (howmny .eq. 'A') then c c %--------------------------------------------% c | Compute the NCONV wanted eigenvectors of T | c | located in workl(iuptri,ldq). | c %--------------------------------------------% c do 30 j=1, ncv if (j .le. nconv) then select(j) = .true. else select(j) = .false. end if 30 continue c call ctrevc('Right', 'Select' , select , & ncv , workl(iuptri), ldq , & vl , 1 , workl(invsub), & ldq , ncv , outncv , & workev , rwork , ierr) c if (ierr .ne. 0) then info = -9 go to 9000 end if c c %------------------------------------------------% c | Scale the returning eigenvectors so that their | c | Euclidean norms are all one. LAPACK subroutine | c | ctrevc returns each eigenvector normalized so | c | that the element of largest magnitude has | c | magnitude 1. | c %------------------------------------------------% c do 40 j=1, nconv rtemp = scnrm2(ncv, workl(invsub+(j-1)*ldq), 1) rtemp = real(one) / rtemp call csscal ( ncv, rtemp, & workl(invsub+(j-1)*ldq), 1 ) c c %------------------------------------------% c | Ritz estimates can be obtained by taking | c | the inner product of the last row of the | c | Schur basis of H with eigenvectors of T. | c | Note that the eigenvector matrix of T is | c | upper triangular, thus the length of the | c | inner product can be set to j. | c %------------------------------------------% c workev(j) = cdotc(j, workl(ihbds), 1, & workl(invsub+(j-1)*ldq), 1) 40 continue c if (msglvl .gt. 2) then call ccopy(nconv, workl(invsub+ncv-1), ldq, & workl(ihbds), 1) call cvout (logfil, nconv, workl(ihbds), ndigit, & '_neupd: Last row of the eigenvector matrix for T') if (msglvl .gt. 3) then call cmout(logfil , ncv, ncv , & workl(invsub), ldq, ndigit, & '_neupd: The eigenvector matrix for T') end if end if c c %---------------------------------------% c | Copy Ritz estimates into workl(ihbds) | c %---------------------------------------% c call ccopy(nconv, workev, 1, workl(ihbds), 1) c c %----------------------------------------------% c | The eigenvector matrix Q of T is triangular. | c | Form Z*Q. | c %----------------------------------------------% c call ctrmm('Right' , 'Upper' , 'No transpose', & 'Non-unit', n , nconv , & one , workl(invsub), ldq , & z , ldz) end if c else c c %--------------------------------------------------% c | An approximate invariant subspace is not needed. | c | Place the Ritz values computed CNAUPD into D. | c %--------------------------------------------------% c call ccopy(nconv, workl(ritz), 1, d, 1) call ccopy(nconv, workl(ritz), 1, workl(iheig), 1) call ccopy(nconv, workl(bounds), 1, workl(ihbds), 1) c end if c c %------------------------------------------------% c | Transform the Ritz values and possibly vectors | c | and corresponding error bounds of OP to those | c | of A*x = lambda*B*x. | c %------------------------------------------------% c if (type .eq. 'REGULR') then c if (rvec) & call cscal(ncv, rnorm, workl(ihbds), 1) c else c c %---------------------------------------% c | A spectral transformation was used. | c | * Determine the Ritz estimates of the | c | Ritz values in the original system. | c %---------------------------------------% c if (rvec) & call cscal(ncv, rnorm, workl(ihbds), 1) c do 50 k=1, ncv temp = workl(iheig+k-1) workl(ihbds+k-1) = workl(ihbds+k-1) / temp / temp 50 continue c end if c c %-----------------------------------------------------------% c | * Transform the Ritz values back to the original system. | c | For TYPE = 'SHIFTI' the transformation is | c | lambda = 1/theta + sigma | c | NOTES: | c | *The Ritz vectors are not affected by the transformation. | c %-----------------------------------------------------------% c if (type .eq. 'SHIFTI') then do 60 k=1, nconv d(k) = one / workl(iheig+k-1) + sigma 60 continue end if c if (type .ne. 'REGULR' .and. msglvl .gt. 1) then call cvout (logfil, nconv, d, ndigit, & '_neupd: Untransformed Ritz values.') call cvout (logfil, nconv, workl(ihbds), ndigit, & '_neupd: Ritz estimates of the untransformed Ritz values.') else if ( msglvl .gt. 1) then call cvout (logfil, nconv, d, ndigit, & '_neupd: Converged Ritz values.') call cvout (logfil, nconv, workl(ihbds), ndigit, & '_neupd: Associated Ritz estimates.') end if c c %-------------------------------------------------% c | Eigenvector Purification step. Formally perform | c | one of inverse subspace iteration. Only used | c | for MODE = 3. See reference 3. | c %-------------------------------------------------% c if (rvec .and. howmny .eq. 'A' .and. type .eq. 'SHIFTI') then c c %------------------------------------------------% c | Purify the computed Ritz vectors by adding a | c | little bit of the residual vector: | c | T | c | resid(:)*( e s ) / theta | c | NCV | c | where H s = s theta. | c %------------------------------------------------% c do 100 j=1, nconv if (workl(iheig+j-1) .ne. zero) then workev(j) = workl(invsub+(j-1)*ldq+ncv-1) / & workl(iheig+j-1) endif 100 continue c %---------------------------------------% c | Perform a rank one update to Z and | c | purify all the Ritz vectors together. | c %---------------------------------------% c call cgeru (n, nconv, one, resid, 1, workev, 1, z, ldz) c end if c 9000 continue c return c c %---------------% c | End of cneupd| c %---------------% c end