# Lines starting with # are treated as comments, empty lines are ignored # line starting with ## denote example name # each example is one line asciimath expression, followed by at least one line of text # with expected result ## literal a a ## division 1/2 1 ─── 2 ## sqrt sqrt x ▁ ╲╱x ## root root a b a▁ ╲╱b ## superscript 2^x x 2 ## subscript 2_x 2 x ##sub- and super-script 2_x^y y 2 x ## brackets - round (x) (x) ## brackets - round height 2 (stackrel x 2) ⎛x⎞ ⎝2⎠ ## brackets - round height 3 (stackrel a (stackrel b c)) ⎛a⎞ ⎜b⎜ ⎝c⎠ ## brackets - square [x] [x] ## brackets - square height 2 [stackrel x 2] ⎡x⎤ ⎣2⎦ ## brackets - square height 3 [stackrel a (stackrel b c)] ⎡a⎤ ⎥b⎥ ⎣c⎦ ## brackets - curly {x} {x} ## brackets - curly height 2 {stackrel x 2} ⎰x⎱ ⎱2⎰ ## brackets - curly height 3 {stackrel a (stackrel b c)} ⎧a⎫ ⎨b⎬ ⎩c⎭ ## brackets - angled <> ⟨x⟩ ## brackets - angled height 2 <> ╱x╲ ╲2╱ ## brackets - angled height 3 <> ╱a╲ 🮤 b🮥 ╲c╱ ## The Discrete Fourier Transform is defined as X^k=1/N sum_(n=0)^(N-1)x_n * e^(-ik (2pi)/N n) = 1/N sum_(n=0)^(N-1)x_n[cos(k (2pi)/N n) -i sin(k (2pi)/N n)] 2π -ik────n k 1 N-1 N 1 N-1 ⎡ ⎛ 2π ⎞ ⎛ 2π ⎞⎤ X =───∑ x ⋅e =───∑ x ⎥cos⎜k────n⎜-isin⎜k────n⎜⎥ N n=0 n N n=0 n⎣ ⎝ N ⎠ ⎝ N ⎠⎦ # end of file