# Lines starting with # are treated as comments, empty lines are ignored
# line starting with ## denote example name
# each example is one line asciimath expression, followed by at least one line of text
# with expected result

## literal
a
a

## division
1/2
 1 
───
 2 
## sqrt
sqrt x
  ▁
╲╱x
## root
root a b
 a▁
╲╱b
## superscript
2^x
 x
2 
## subscript
2_x
2 
 x
##sub- and super-script
2_x^y
 y
2 
 x
## brackets - round
(x)
(x)
## brackets - round height 2
(stackrel x 2)
⎛x⎞
⎝2⎠
## brackets - round height 3
(stackrel a (stackrel b c))
⎛a⎞
⎜b⎜
⎝c⎠
## brackets - square
[x]
[x]
## brackets - square height 2
[stackrel x 2]
⎡x⎤
⎣2⎦
## brackets - square height 3
[stackrel a (stackrel b c)]
⎡a⎤
⎥b⎥
⎣c⎦
## brackets - curly
{x}
{x}
## brackets - curly height 2
{stackrel x 2}
⎰x⎱
⎱2⎰
## brackets - curly height 3
{stackrel a (stackrel b c)}
⎧a⎫
⎨b⎬
⎩c⎭
## brackets - angled
<<x>>
⟨x⟩
## brackets - angled height 2
<<stackrel x 2>>
╱x╲
╲2╱
## brackets - angled height 3
<<stackrel a (stackrel b c)>>
 ╱a╲ 
🮤 b🮥 
 ╲c╱ 
## The Discrete Fourier Transform is defined as
X^k=1/N sum_(n=0)^(N-1)x_n * e^(-ik (2pi)/N n) = 1/N sum_(n=0)^(N-1)x_n[cos(k (2pi)/N n) -i sin(k (2pi)/N n)]
                  2Ï€                                      
              -ik────n                                    
 k  1  N-1         N    1  N-1  ⎡   ⎛  2π  ⎞     ⎛  2π  ⎞⎤
X =───∑   x ⋅e        =───∑   x ⎥cos⎜k────n⎜-isin⎜k────n⎜⎥
    N  n=0 n            N  n=0 n⎣   ⎝   N  ⎠     ⎝   N  ⎠⎦
# end of file