FAMIN Floating-point absolute minimum This instruction determines the minimum absolute value from floating-point elements of the first source vector and the corresponding floating-point elements of the second source vector, and places the results in the corresponding elements of the destination vector. The behavior is as follows: When FPCR.DN is 0, if either element is a NaN, the result is a quiet NaN. When FPCR.DN is 1, if either element is a NaN, the result is the Default NaN. Denormalized inputs and results are never flushed to zero, as if FPCR.{FZ, FZ16, FIZ} is {0, 0, 0}. Denormalized inputs never generate an Input Denormal floating-point exception. It has encodings from 2 classes: Half-precision and Single-precision and double-precision 0 1 0 1 1 1 0 1 1 0 0 0 0 1 1 1 FAMIN <Vd>.<T>, <Vn>.<T>, <Vm>.<T> if !IsFeatureImplemented(FEAT_FAMINMAX) then UNDEFINED; constant integer d = UInt(Rd); constant integer n = UInt(Rn); constant integer m = UInt(Rm); constant integer esize = 16; constant integer datasize = if Q == '1' then 128 else 64; constant integer elements = datasize DIV esize; 0 1 0 1 1 1 0 1 x 1 1 1 0 1 1 1 FAMIN <Vd>.<T>, <Vn>.<T>, <Vm>.<T> if !IsFeatureImplemented(FEAT_FAMINMAX) then UNDEFINED; if Q == '0' && size == '11' then UNDEFINED; constant integer d = UInt(Rd); constant integer n = UInt(Rn); constant integer m = UInt(Rm); constant integer esize = 8 << UInt(size); constant integer datasize = if Q == '1' then 128 else 64; constant integer elements = datasize DIV esize; <Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field. <T> For the half-precision variant: is an arrangement specifier, Q <T> 0 4H 1 8H
<T> For the single-precision and double-precision variant: is an arrangement specifier, size<0> Q <T> 0 0 2S 0 1 4S 1 0 RESERVED 1 1 2D
<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field. <Vm> Is the name of the second SIMD&FP source register, encoded in the "Rm" field.
CheckFPAdvSIMDEnabled64(); constant bits(datasize) operand1 = V[n, datasize]; constant bits(datasize) operand2 = V[m, datasize]; bits(datasize) result; for e = 0 to elements-1 constant bits(esize) op1 = Elem[operand1, e, esize]; constant bits(esize) op2 = Elem[operand2, e, esize]; Elem[result, e, esize] = FPAbsMin(op1, op2, FPCR); V[d, datasize] = result;