FCADD
Floating-point complex add with rotate (predicated)
Add the real and imaginary components of the active floating-point complex numbers from the first source vector to the complex numbers from the second source vector which have first been rotated by 90 or 270 degrees in the direction from the positive real axis towards the positive imaginary axis, when considered in polar representation, equivalent to multiplying the complex numbers in the second source vector by ±j beforehand. Destructively place the results in the corresponding elements of the first source vector. Inactive elements in the destination vector register remain unmodified.
Each complex number is represented in a vector register as an even/odd pair of elements with the real part in the even-numbered element and the imaginary part in the odd-numbered element.
Green
True
True
True
0
1
1
0
0
1
0
0
0
0
0
0
0
1
0
0
FCADD <Zdn>.<T>, <Pg>/M, <Zdn>.<T>, <Zm>.<T>, <const>
if !IsFeatureImplemented(FEAT_SVE) && !IsFeatureImplemented(FEAT_SME) then UNDEFINED;
if size == '00' then UNDEFINED;
constant integer esize = 8 << UInt(size);
constant integer g = UInt(Pg);
constant integer dn = UInt(Zdn);
constant integer m = UInt(Zm);
constant boolean sub_i = (rot == '0');
constant boolean sub_r = (rot == '1');
<Zdn>
Is the name of the first source and destination scalable vector register, encoded in the "Zdn" field.
<T>
Is the size specifier,
size
<T>
00
RESERVED
01
H
10
S
11
D
<Pg>
Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.
<Zm>
Is the name of the second source scalable vector register, encoded in the "Zm" field.
<const>
Is the const specifier,
CheckSVEEnabled();
constant integer VL = CurrentVL;
constant integer PL = VL DIV 8;
constant integer pairs = VL DIV (2 * esize);
constant bits(PL) mask = P[g, PL];
constant bits(VL) operand1 = Z[dn, VL];
constant bits(VL) operand2 = if AnyActiveElement(mask, esize) then Z[m, VL] else Zeros(VL);
bits(VL) result;
for p = 0 to pairs-1
bits(esize) acc_r = Elem[operand1, 2 * p + 0, esize];
bits(esize) acc_i = Elem[operand1, 2 * p + 1, esize];
if ActivePredicateElement(mask, 2 * p + 0, esize) then
bits(esize) elt2_i = Elem[operand2, 2 * p + 1, esize];
if sub_i then elt2_i = FPNeg(elt2_i, FPCR);
acc_r = FPAdd(acc_r, elt2_i, FPCR);
if ActivePredicateElement(mask, 2 * p + 1, esize) then
bits(esize) elt2_r = Elem[operand2, 2 * p + 0, esize];
if sub_r then elt2_r = FPNeg(elt2_r, FPCR);
acc_i = FPAdd(acc_i, elt2_r, FPCR);
Elem[result, 2 * p + 0, esize] = acc_r;
Elem[result, 2 * p + 1, esize] = acc_i;
Z[dn, VL] = result;