FCVTN (FP32 to FP8) Multi-vector floating-point convert from single-precision to interleaved 8-bit floating-point format Convert each single-precision element of the four source vectors to 8-bit floating-point while scaling the value by 2SInt(FPMR.NSCALE), and place the four-way interleaved results in the quarter-width elements of the destination vector. The 8-bit floating-point encoding format is selected by FPMR.F8D. This instruction is unpredicated. Green False SM_1_only 1 1 0 0 0 0 0 1 0 0 1 1 0 1 0 0 1 1 1 0 0 0 0 1 FCVTN <Zd>.B, { <Zn1>.S-<Zn4>.S } if !IsFeatureImplemented(FEAT_SME2) || !IsFeatureImplemented(FEAT_FP8) then UNDEFINED; constant integer n = UInt(Zn:'00'); constant integer d = UInt(Zd); <Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field. <Zn1> Is the name of the first scalable vector register of the source multi-vector group, encoded as "Zn" times 4. <Zn4> Is the name of the fourth scalable vector register of the source multi-vector group, encoded as "Zn" times 4 plus 3. CheckFPMREnabled(); CheckStreamingSVEEnabled(); constant integer VL = CurrentVL; constant integer elements = VL DIV 32; bits(VL) result; constant bits(VL) operand1 = Z[n+0, VL]; constant bits(VL) operand2 = Z[n+1, VL]; constant bits(VL) operand3 = Z[n+2, VL]; constant bits(VL) operand4 = Z[n+3, VL]; for e = 0 to elements-1 constant bits(32) element1 = Elem[operand1, e, 32]; constant bits(32) element2 = Elem[operand2, e, 32]; constant bits(32) element3 = Elem[operand3, e, 32]; constant bits(32) element4 = Elem[operand4, e, 32]; Elem[result, 4*e + 0, 8] = FPConvertFP8(element1, FPCR, FPMR, 8); Elem[result, 4*e + 1, 8] = FPConvertFP8(element2, FPCR, FPMR, 8); Elem[result, 4*e + 2, 8] = FPConvertFP8(element3, FPCR, FPMR, 8); Elem[result, 4*e + 3, 8] = FPConvertFP8(element4, FPCR, FPMR, 8); Z[d, VL] = result;