FMLALT (indexed, FP16 to FP32) Half-precision floating-point multiply-add long to single-precision (top, indexed) This half-precision floating-point multiply-add long instruction widens the odd-numbered half-precision elements in the first source vector and the indexed element from the corresponding 128-bit segment in the second source vector to single-precision format and then destructively multiplies and adds these values without intermediate rounding to the single-precision elements of the destination vector that overlap with the corresponding half-precision elements in the first source vector. This instruction is unpredicated. Green False True 0 1 1 0 0 1 0 0 1 0 1 0 1 0 0 1 FMLALT <Zda>.S, <Zn>.H, <Zm>.H[<imm>] if !IsFeatureImplemented(FEAT_SVE2) && !IsFeatureImplemented(FEAT_SME) then UNDEFINED; constant integer esize = 32; constant integer n = UInt(Zn); constant integer m = UInt(Zm); constant integer da = UInt(Zda); constant integer index = UInt(i3h:i3l); constant boolean op1_neg = FALSE; <Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda" field. <Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field. <Zm> Is the name of the second source scalable vector register Z0-Z7, encoded in the "Zm" field. <imm> Is the immediate index, in the range 0 to 7, encoded in the "i3h:i3l" fields. CheckSVEEnabled(); constant integer VL = CurrentVL; constant integer PL = VL DIV 8; constant integer elements = VL DIV esize; constant integer eltspersegment = 128 DIV esize; constant bits(VL) op1 = Z[n, VL]; constant bits(VL) op2 = Z[m, VL]; constant bits(VL) op3 = Z[da, VL]; bits(VL) result; for e = 0 to elements-1 constant integer segmentbase = e - (e MOD eltspersegment); constant integer s = 2 * segmentbase + index; constant bits(esize DIV 2) elem1 = (if op1_neg then FPNeg(Elem[op1, 2*e + 1, esize DIV 2], FPCR) else Elem[op1, 2*e + 1, esize DIV 2]); constant bits(esize DIV 2) elem2 = Elem[op2, s, esize DIV 2]; constant bits(esize) elem3 = Elem[op3, e, esize]; Elem[result, e, esize] = FPMulAddH(elem3, elem1, elem2, FPCR); Z[da, VL] = result;