FMUL (by element) Floating-point multiply (by element) This instruction multiplies the vector elements in the first source SIMD&FP register by the specified value in the second source SIMD&FP register, places the results in a vector, and writes the vector to the destination SIMD&FP register. All the values in this instruction are floating-point values. This instruction can generate a floating-point exception. Depending on the settings in FPCR, the exception results in either a flag being set in FPSR or a synchronous exception being generated. For more information, see Floating-point exception traps. Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped. It has encodings from 4 classes: Scalar, half-precision , Scalar, single-precision and double-precision , Vector, half-precision and Vector, single-precision and double-precision 0 1 0 1 1 1 1 1 0 0 1 0 0 1 0 FMUL <Hd>, <Hn>, <Vm>.H[<index>] if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED; constant integer idxdsize = 64 << UInt(H); constant integer d = UInt(Rd); constant integer n = UInt(Rn); constant integer m = UInt(Rm); constant integer index = UInt(H:L:M); constant integer esize = 16; constant integer datasize = esize; constant integer elements = 1; 0 1 0 1 1 1 1 1 1 1 0 0 1 0 FMUL <V><d>, <V><n>, <Vm>.<Ts>[<index>] constant integer idxdsize = 64 << UInt(H); integer index; constant bit Rmhi = M; case sz:L of when '0x' index = UInt(H:L); when '10' index = UInt(H); when '11' UNDEFINED; constant integer d = UInt(Rd); constant integer n = UInt(Rn); constant integer m = UInt(Rmhi:Rm); constant integer esize = 32 << UInt(sz); constant integer datasize = esize; constant integer elements = 1; 0 0 0 1 1 1 1 0 0 1 0 0 1 0 FMUL <Vd>.<T>, <Vn>.<T>, <Vm>.H[<index>] if !IsFeatureImplemented(FEAT_FP16) then UNDEFINED; constant integer idxdsize = 64 << UInt(H); constant integer d = UInt(Rd); constant integer n = UInt(Rn); constant integer m = UInt(Rm); constant integer index = UInt(H:L:M); constant integer esize = 16; constant integer datasize = 64 << UInt(Q); constant integer elements = datasize DIV esize; 0 0 0 1 1 1 1 1 1 0 0 1 0 FMUL <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>] constant integer idxdsize = 64 << UInt(H); integer index; constant bit Rmhi = M; case sz:L of when '0x' index = UInt(H:L); when '10' index = UInt(H); when '11' UNDEFINED; constant integer d = UInt(Rd); constant integer n = UInt(Rn); constant integer m = UInt(Rmhi:Rm); if sz:Q == '10' then UNDEFINED; constant integer esize = 32 << UInt(sz); constant integer datasize = 64 << UInt(Q); constant integer elements = datasize DIV esize; <Hd> Is the 16-bit name of the SIMD&FP destination register, encoded in the "Rd" field. <Hn> Is the 16-bit name of the first SIMD&FP source register, encoded in the "Rn" field. <Vm> For the half-precision variant: is the name of the second SIMD&FP source register, in the range V0 to V15, encoded in the "Rm" field. <Vm> For the single-precision and double-precision variant: is the name of the second SIMD&FP source register, encoded in the "M:Rm" fields. <index> For the half-precision variant: is the element index, in the range 0 to 7, encoded in the "H:L:M" fields. <index> For the single-precision and double-precision variant: is the element index, sz L <index> 0 x UInt(H:L) 1 0 UInt(H) 1 1 RESERVED
<V> Is a width specifier, sz <V> 0 S 1 D
<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field. <n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field. <Ts> Is an element size specifier, sz <Ts> 0 S 1 D
<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field. <T> For the half-precision variant: is an arrangement specifier, Q <T> 0 4H 1 8H
<T> For the single-precision and double-precision variant: is an arrangement specifier, Q sz <T> 0 0 2S 0 1 RESERVED 1 0 4S 1 1 2D
<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
CheckFPAdvSIMDEnabled64(); constant bits(datasize) operand1 = V[n, datasize]; constant bits(idxdsize) operand2 = V[m, idxdsize]; bits(esize) element1; constant bits(esize) element2 = Elem[operand2, index, esize]; constant boolean merge = elements == 1 && IsMerging(FPCR); bits(128) result = if merge then V[n, 128] else Zeros(128); for e = 0 to elements-1 element1 = Elem[operand1, e, esize]; Elem[result, e, esize] = FPMul(element1, element2, FPCR); V[d, 128] = result;