LDFF1W (scalar plus scalar) Contiguous load first-fault unsigned words to vector (scalar index) Contiguous load with first-faulting behavior of unsigned words to elements of a vector register from the memory address generated by a 64-bit scalar base and scalar index which is multiplied by 4 and added to the base address. After each element access the index value is incremented, but the index register is not updated. Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination vector. This instruction is illegal when executed in Streaming SVE mode, unless FEAT_SME_FA64 is implemented and enabled. Green True True SM_0_only It has encodings from 2 classes: 32-bit element and 64-bit element 1 0 1 0 0 1 0 1 0 1 0 0 1 1 LDFF1W { <Zt>.S }, <Pg>/Z, [<Xn|SP>{, <Xm>, LSL #2}] if !IsFeatureImplemented(FEAT_SVE) then UNDEFINED; constant integer t = UInt(Zt); constant integer n = UInt(Rn); constant integer m = UInt(Rm); constant integer g = UInt(Pg); constant integer esize = 32; constant integer msize = 32; constant boolean unsigned = TRUE; 1 0 1 0 0 1 0 1 0 1 1 0 1 1 LDFF1W { <Zt>.D }, <Pg>/Z, [<Xn|SP>{, <Xm>, LSL #2}] if !IsFeatureImplemented(FEAT_SVE) then UNDEFINED; constant integer t = UInt(Zt); constant integer n = UInt(Rn); constant integer m = UInt(Rm); constant integer g = UInt(Pg); constant integer esize = 64; constant integer msize = 32; constant boolean unsigned = TRUE; <Zt> Is the name of the scalable vector register to be transferred, encoded in the "Zt" field. <Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field. <Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field. <Xm> Is the optional 64-bit name of the general-purpose offset register, defaulting to XZR, encoded in the "Rm" field. CheckNonStreamingSVEEnabled(); constant integer VL = CurrentVL; constant integer PL = VL DIV 8; constant integer elements = VL DIV esize; bits(64) base; constant bits(PL) mask = P[g, PL]; bits(VL) result; constant bits(VL) orig = Z[t, VL]; bits(msize) data; bits(64) offset; bits(64) addr; constant integer mbytes = msize DIV 8; boolean fault = FALSE; boolean faulted = FALSE; boolean unknown = FALSE; constant boolean contiguous = TRUE; constant boolean tagchecked = TRUE; AccessDescriptor accdesc = CreateAccDescSVEFF(contiguous, tagchecked); if !AnyActiveElement(mask, esize) then if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then CheckSPAlignment(); else if n == 31 then CheckSPAlignment(); base = if n == 31 then SP[] else X[n, 64]; offset = X[m, 64]; addr = AddressAdd(base, UInt(offset) * mbytes, accdesc); assert accdesc.first; for e = 0 to elements-1 if ActivePredicateElement(mask, e, esize) then if accdesc.first then // Mem[] will not return if a fault is detected for the first active element data = Mem[addr, mbytes, accdesc]; accdesc.first = FALSE; else // MemNF[] will return fault=TRUE if access is not performed for any reason (data, fault) = MemNF[addr, mbytes, accdesc]; else (data, fault) = (Zeros(msize), FALSE); addr = AddressIncrement(addr, mbytes, accdesc); // FFR elements set to FALSE following a suppressed access/fault faulted = faulted || fault; if faulted then ElemFFR[e, esize] = '0'; // Value becomes CONSTRAINED UNPREDICTABLE after an FFR element is FALSE unknown = unknown || ElemFFR[e, esize] == '0'; if unknown then if !fault && ConstrainUnpredictableBool(Unpredictable_SVELDNFDATA) then Elem[result, e, esize] = Extend(data, esize, unsigned); elsif ConstrainUnpredictableBool(Unpredictable_SVELDNFZERO) then Elem[result, e, esize] = Zeros(esize); else // merge Elem[result, e, esize] = Elem[orig, e, esize]; else Elem[result, e, esize] = Extend(data, esize, unsigned); Z[t, VL] = result;