SQRDMULH (by element) Signed saturating rounding doubling multiply returning high half (by element) This instruction multiplies each vector element in the first source SIMD&FP register by the specified vector element of the second source SIMD&FP register, doubles the results, places the most significant half of the final results into a vector, and writes the vector to the destination SIMD&FP register. The results are rounded. For truncated results, see SQDMULH. If any of the results overflows, they are saturated. If saturation occurs, the cumulative saturation bit FPSR.QC is set. Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security state and Exception level, an attempt to execute the instruction might be trapped. If PSTATE.DIT is 1: The execution time of this instruction is independent of: The values of the data supplied in any of its registers. The values of the NZCV flags. The response of this instruction to asynchronous exceptions does not vary based on: The values of the data supplied in any of its registers. The values of the NZCV flags. It has encodings from 2 classes: Scalar and Vector 0 1 0 1 1 1 1 1 1 1 0 1 0 SQRDMULH <V><d>, <V><n>, <Vm>.<Ts>[<index>] constant integer idxdsize = 64 << UInt(H); integer index; bit Rmhi; case size of when '01' index = UInt(H:L:M); Rmhi = '0'; when '10' index = UInt(H:L); Rmhi = M; otherwise UNDEFINED; constant integer d = UInt(Rd); constant integer n = UInt(Rn); constant integer m = UInt(Rmhi:Rm); constant integer esize = 8 << UInt(size); constant integer datasize = esize; constant integer elements = 1; constant boolean round = TRUE; 0 0 0 1 1 1 1 1 1 0 1 0 SQRDMULH <Vd>.<T>, <Vn>.<T>, <Vm>.<Ts>[<index>] constant integer idxdsize = 64 << UInt(H); integer index; bit Rmhi; case size of when '01' index = UInt(H:L:M); Rmhi = '0'; when '10' index = UInt(H:L); Rmhi = M; otherwise UNDEFINED; constant integer d = UInt(Rd); constant integer n = UInt(Rn); constant integer m = UInt(Rmhi:Rm); constant integer esize = 8 << UInt(size); constant integer datasize = 64 << UInt(Q); constant integer elements = datasize DIV esize; constant boolean round = TRUE; <V> Is a width specifier, size <V> 00 RESERVED 01 H 10 S 11 RESERVED
<d> Is the number of the SIMD&FP destination register, encoded in the "Rd" field. <n> Is the number of the first SIMD&FP source register, encoded in the "Rn" field. <Vm> Is the name of the second SIMD&FP source register, size <Vm> 00 RESERVED 01 UInt('0':Rm) 10 UInt(M:Rm) 11 RESERVED
Restricted to V0-V15 when element size <Ts> is H.
<Ts> Is an element size specifier, size <Ts> 00 RESERVED 01 H 10 S 11 RESERVED
<index> Is the element index, size <index> 00 RESERVED 01 UInt(H:L:M) 10 UInt(H:L) 11 RESERVED
<Vd> Is the name of the SIMD&FP destination register, encoded in the "Rd" field. <T> Is an arrangement specifier, size Q <T> 00 x RESERVED 01 0 4H 01 1 8H 10 0 2S 10 1 4S 11 x RESERVED
<Vn> Is the name of the first SIMD&FP source register, encoded in the "Rn" field.
CheckFPAdvSIMDEnabled64(); constant bits(datasize) operand1 = V[n, datasize]; constant bits(idxdsize) operand2 = V[m, idxdsize]; bits(datasize) result; integer element1; integer element2; integer product; boolean sat; element2 = SInt(Elem[operand2, index, esize]); for e = 0 to elements-1 element1 = SInt(Elem[operand1, e, esize]); product = 2 * element1 * element2; product = RShr(product, esize, round); // The following only saturates if element1 and element2 equal -(2^(esize-1)) (Elem[result, e, esize], sat) = SignedSatQ(product, esize); if sat then FPSR.QC = '1'; V[d, datasize] = result;