//use tensor_rs::tensor::Tensor; //use auto_diff::var::{Module, Var, bcewithlogitsloss}; //fn alexnet(x: Var) { // def __init__(self, num_classes=1000): // super(AlexNet, self).__init__() // self.features = nn.Sequential( // nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2), // nn.ReLU(inplace=True), // nn.MaxPool2d(kernel_size=3, stride=2), // nn.Conv2d(64, 192, kernel_size=5, padding=2), // nn.ReLU(inplace=True), // nn.MaxPool2d(kernel_size=3, stride=2), // nn.Conv2d(192, 384, kernel_size=3, padding=1), // nn.ReLU(inplace=True), // nn.Conv2d(384, 256, kernel_size=3, padding=1), // nn.ReLU(inplace=True), // nn.Conv2d(256, 256, kernel_size=3, padding=1), // nn.ReLU(inplace=True), // nn.MaxPool2d(kernel_size=3, stride=2), // ) // self.avgpool = nn.AdaptiveAvgPool2d((6, 6)) // self.classifier = nn.Sequential( // nn.Dropout(), // nn.Linear(256 * 6 * 6, 4096), // nn.ReLU(inplace=True), // nn.Dropout(), // nn.Linear(4096, 4096), // nn.ReLU(inplace=True), // nn.Linear(4096, num_classes), // ) // // def forward(self, x): // x = self.features(x) // x = self.avgpool(x) // x = torch.flatten(x, 1) // x = self.classifier(x) // return x //} fn main() { }