[package] name = "autograd" version = "2.0.0-rc3" authors = ["raskr "] edition = "2018" repository = "https://github.com/raskr/rust-autograd" keywords = ["numerics", "machine-learning", "ndarray", "multidimensional", "neural-network"] license-file = "LICENSE" readme = "README.md" description = "Tensors and differentiable operations in Rust" documentation = "https://docs.rs/autograd/" [dependencies] rand = "0.8.0" rand_distr = "0.4.0" rand_xorshift = "0.3.0" ndarray = { version = "0.14.0", features = ["serde", "approx"] } rayon = "1.0" libc = "0.2" matrixmultiply = "0.2.2" num-traits = "0.2" num = "0.3" rustc-hash = "1.0.1" smallvec = "1.2.0" uuid = { version = "0.8", features = ["v4"] } serde = "1.0.120" serde_derive = "1.0.120" serde_json = "1.0" approx = "0.4.0" special = "0.8.1" # -- blas deps blas-src = { version = "0.8", optional = true, default-features = false } intel-mkl-src = { version = "0.5", optional = true, default-features = false } cblas-sys = { version = "0.1.4", optional = true, default-features = false } [features] blas = [] intel-mkl = ["intel-mkl-src", "cblas-sys"] accelerate = ["blas-src/accelerate", "cblas-sys"] openblas = ["blas-src/openblas", "cblas-sys"] [lib] name = "autograd" path = "src/lib.rs" [[example]] name = "mlp_mnist" path = "examples/mlp_mnist.rs" [[example]] name = "lstm_lm" path = "examples/lstm_lm.rs" [[example]] name = "cnn_mnist" path = "examples/cnn_mnist.rs" [[example]] name = "sine" path = "examples/sine.rs"