
BASICLU User Guide

Version 2.2

August 21, 2021

Contents

1 Algorithm 2

2 Installation 2
2.1 Compiling BASICLU . 2
2.2 The integer type . 2

3 Low level C interface 2
3.1 basiclu initialize . 3
3.2 basiclu factorize . 5
3.3 basiclu get factors . 9
3.4 basiclu solve dense . 11
3.5 basiclu solve sparse . 13
3.6 basiclu solve for update . 15
3.7 basiclu update . 18

4 High level C interface 20
4.1 basiclu object . 21
4.2 basiclu obj initialize . 22
4.3 basiclu obj get dim . 23
4.4 basiclu obj factorize . 24
4.5 basiclu obj get factors . 25
4.6 basiclu obj solve dense . 26
4.7 basiclu obj solve sparse . 27
4.8 basiclu obj solve for update . 28
4.9 basiclu obj update . 29
4.10 basiclu obj free . 30
4.11 basiclu obj maxvolume . 31

5 Julia interface 33

1

1 Algorithm

BASICLU implements a right-looking LU factorization with dynamic Markowitz search and
columnwise threshold pivoting. After a column modification to the matrix it applies either
a permutation or the Forrest-Tomlin update to maintain a factorized form. It uses the
method of Gilbert and Peierls to solve triangular systems with a sparse right-hand side.
A more detailed explanation of the method is given in [Technical Report ERGO 17-002,
http://www.maths.ed.ac.uk/ERGO/preprints.html].

2 Installation

2.1 Compiling BASICLU

Compiling BASICLU requires GNUmake and a C compiler that (partly) supports the ANSI
C99 standard.

To compile the package type make in the BASICLU directory. This will create a static
and a shared library inside lib/. It will also compile a standalone program maxvolume in
example/. You can call the latter with the matrices in example/data/.

Compiler and linker flags can be changed in config.mk or can be given to make on the
command line. See the documentation in config.mk.

2.2 The integer type

BASICLU integer variables are of type lu int, which is typedef’ed in basiclu.h. lu int

must be a signed integer type. The default is int64 t. It can be changed before compiling
the package. Note:

• The BASICLU routines do not check for integer overflow. It is in your responsibility
to choose a sufficiently large integer type for your problems.

• It is required that all integer values arising in the computation can be stored in double

variables and converted back to lu int without altering their value.

3 Low level C interface

The low level C interface consists of routines which do not allocate memory. Memory must
be provided by the user and reallocated on request. To use the low level C interface, user
code must include basiclu.h. Defined constants start with BASICLU and function names
start with basiclu .

Memory must be provided in form of four lu int arrays and four double arrays:

istore, xstore are arrays whose size depends only on the matrix dimension (see basiclu initialize

for their required length). xstore is used to input parameters to the routines and to
return information to the user. The indices of xstore which the user may access have
defined names, e. g. xstore[BASICLU STATUS] holds the status code. istore need not
be accessed by the user.

Li, Lx, Ui, Ux, Wi, Wx are arrays whose required size is not known in advance. Their
size must be given by the user as parameters (see below) and BASICLU will request
reallocation if the size is insufficient. These arrays need not be accessed by the user.

2

3.1 basiclu initialize

lu_int basiclu_initialize

(

lu_int m,

lu_int istore[],

double xstore[]

);

Purpose:

Initialize istore, xstore to a BASICLU instance. Set parameters to defaults

and reset counters. The initialization fixes the dimension of matrices

which can be processed by this instance.

This routine must be called once before passing istore, xstore to any other

basiclu_ routine.

Return:

BASICLU_OK

m, istore, xstore were valid arguments. Only in this case are istore,

xstore initialized.

BASICLU_ERROR_argument_missing

istore or xstore is NULL.

BASICLU_ERROR_invalid_argument

m is less than or equal to zero.

Arguments:

lu_int m

The dimension of matrices which can be processed. m > 0.

lu_int istore[]

double xstore[]

Fixed size arrays. These must be allocated by the user as follows:

length of istore: BASICLU_SIZE_ISTORE_1 + BASICLU_SIZE_ISTORE_M * m

length of xstore: BASICLU_SIZE_XSTORE_1 + BASICLU_SIZE_XSTORE_M * m

Info:

After initialization, the following entries of xstore are maintained

throughout by all basiclu_ routines:

xstore[BASICLU_DIM] Matrix dimension (constant).

xstore[BASICLU_NUPDATE] Number of updates since last factorization. This is

the sum of Forrest-Tomlin updates and permutation

updates.

xstore[BASICLU_NFORREST] Number of Forrest-Tomlin updates since last

factorization. The upper limit on Forrest-Tomlin

updates before refactorization is m, but that is

far too much for performance reasons and numerical

stability.

xstore[BASICLU_NFACTORIZE] Number of factorizations since initialization.

3

xstore[BASICLU_NUPDATE_TOTAL] Number of updates since initialization.

xstore[BASICLU_NFORREST_TOTAL] Number of Forrest-Tomlin updates since

initialization.

xstore[BASICLU_NSYMPERM_TOTAL] Number of symmetric permutation updates since

initialization. A permutation update is

"symmetric" if the row and column

permutation can be updated symmetrically.

xstore[BASICLU_LNZ] Number of nonzeros in L excluding diagonal elements

(not changed by updates).

xstore[BASICLU_UNZ] Number of nonzeros in U excluding diagonal elements

(changed by updates).

xstore[BASICLU_RNZ] Number of nonzeros in update ETA vectors excluding

diagonal elements (zero after factorization, increased

by Forrest-Tomlin updates).

xstore[BASICLU_MIN_PIVOT]

xstore[BASICLU_MAX_PIVOT] After factorization these are the smallest and

largest pivot element. xstore[BASICLU_MIN_PIVOT]

is replaced when a smaller pivot occurs in an

update. xstore[BASICLU_MAX_PIVOT] is replaced when

a larger pivot occurs in an update.

xstore[BASICLU_UPDATE_COST] Deterministic measure of solve/update cost

compared to cost of last factorization. This

value is zero after factorization and

monotonically increases with solves/updates.

When xstore[BASICLU_UPDATE_COST] > 1.0, then

a refactorization is good for performance.

xstore[BASICLU_TIME_FACTORIZE] Wall clock time for last factorization.

xstore[BASICLU_TIME_SOLVE] Wall clock time for all calls to

basiclu_solve_sparse and basiclu_solve_for_update

since last factorization.

xstore[BASICLU_TIME_UPDATE] Wall clock time for all calls to basiclu_update

since last factorization.

xstore[BASICLU_TIME_FACTORIZE_TOTAL]

xstore[BASICLU_TIME_SOLVE_TOTAL]

xstore[BASICLU_TIME_UPDATE_TOTAL] Analogous to above, but summing up all

calls since initialization.

xstore[BASICLU_LFLOPS]

xstore[BASICLU_UFLOPS]

xstore[BASICLU_RFLOPS] Number of flops for operations with L, U and update

ETA vectors in calls to basiclu_solve_sparse and

basiclu_solve_for_update since last factorization.

4

3.2 basiclu factorize

lu_int basiclu_factorize

(

lu_int istore[],

double xstore[],

lu_int Li[],

double Lx[],

lu_int Ui[],

double Ux[],

lu_int Wi[],

double Wx[],

const lu_int Bbegin[],

const lu_int Bend[],

const lu_int Bi[],

const double Bx[],

lu_int c0ntinue

);

Purpose:

Factorize the matrix B into its LU factors. Choose pivot elements by a

Markowitz criterion subject to columnwise threshold pivoting (the pivot may

not be smaller than a factor of the largest entry in its column).

Return:

BASICLU_ERROR_invalid_store if istore, xstore do not hold a BASICLU

instance. In this case xstore[BASICLU_STATUS] is not set.

Otherwise return the status code. See xstore[BASICLU_STATUS] below.

Arguments:

lu_int istore[]

double xstore[]

BASICLU instance. The instance determines the dimension of matrix B

(stored in xstore[BASICLU_DIM]).

lu_int Li[]

double Lx[]

lu_int Ui[]

double Ux[]

lu_int Wi[]

double Wx[]

Arrays used for workspace during the factorization and to store the

final factors. They must be allocated by the user and their length

must be provided as parameters:

xstore[BASICLU_MEMORYL]: length of Li and Lx

xstore[BASICLU_MEMORYU]: length of Ui and Ux

xstore[BASICLU_MEMORYW]: length of Wi and Wx

When the allocated length is insufficient to complete the factorization,

basiclu_factorize() returns to the caller for reallocation (see

xstore[BASICLU_STATUS] below). A successful factorization requires at

least nnz(B) length for each of the arrays.

const lu_int Bbegin[]

const lu_int Bend[]

const lu_int Bi[]

const double Bx[]

Matrix B in packed column form. Bi and Bx are arrays of row indices

5

and nonzero values. Column j of matrix B contains elements

Bi[Bbegin[j] .. Bend[j]-1], Bx[Bbegin[j] .. Bend[j]-1].

The columns must not contain duplicate row indices. The arrays Bbegin

and Bend may overlap, so that it is valid to pass Bp, Bp+1 for a matrix

stored in compressed column form (Bp, Bi, Bx).

lu_int c0ntinue

zero to start a new factorization; nonzero to continue a factorization

after reallocation.

Parameters:

xstore[BASICLU_DROP_TOLERANCE]

Nonzeros which magnitude is less than or equal to the drop tolerance can

be removed after each pivot step. They are guaranteed removed at the end

of the factorization. Default: 1e-20

xstore[BASICLU_ABS_PIVOT_TOLERANCE]

A pivot element must be nonzero and in absolute value must be greater

than or equal to xstore[BASICLU_ABS_PIVOT_TOLERANCE]. Default: 1e-14

xstore[BASICLU_REL_PIVOT_TOLERANCE]

A pivot element must be (in absolute value) greater than or equal to

xstore[BASICLU_REL_PIVOT_TOLERANCE] times the largest entry in its

column. A value greater than or equal to 1.0 is treated as 1.0 and

enforces partial pivoting. Default: 0.1

xstore[BASICLU_BIAS_NONZEROS]

When this value is greater than or equal to zero, the pivot choice

attempts to keep L sparse, putting entries into U when possible.

When this value is less than zero, the pivot choice attempts to keep U

sparse, putting entries into L when possible. Default: 1

xstore[BASICLU_MAXN_SEARCH_PIVOT]

The Markowitz search is terminated after searching

xstore[BASICLU_MAXN_SERACH_PIVOT] rows or columns if a numerically

stable pivot element has been found. Default: 3

xstore[BASICLU_SEARCH_ROWS]

If xstore[BASICLU_SEARCH_ROWS] is zero, then the Markowitz search only

scans columns. If nonzero, then both columns and rows are searched in

increasing order of number of entries. Default: 1

xstore[BASICLU_PAD]

xstore[BASICLU_STRETCH]

When a row or column cannot be updated by the pivot operation in place,

it is appended to the end of the workspace. For a row or column with nz

elements, xstore[BASICLU_PAD] + nz * xstore[BASICLU_STRETCH] elements

extra space are added for later fill-in.

Default: xstore[BASICLU_PAD] = 4, xstore[BASICLU_STRETCH] = 0.3

xstore[BASICLU_REMOVE_COLUMNS]

This parameter is present for compatibility to previous versions but has

no effect. If during factorization the maximum entry of a column of the

6

active submatrix becomes zero or less than

xstore[BASICLU_ABS_PIVOT_TOLERANCE], then that column is immediately

removed without choosing a pivot.

Info:

xstore[BASICLU_STATUS]: status code.

BASICLU_OK

The factorization has successfully completed.

BASICLU_WARNING_singular_matrix

The factorization did xstore[BASICLU_RANK] < xstore[BASICLU_DIM]

pivot steps. The remaining elements in the active submatrix are zero

or less than xstore[BASICLU_ABS_PIVOT_TOLERANCE]. The factors have

been augmented by unit columns to form a square matrix. See

basiclu_get_factors() on how to get the indices of linearly

dependent columns.

BASICLU_ERROR_argument_missing

One or more of the pointer/array arguments are NULL.

BASICLU_ERROR_invalid_call

c0ntinue is nonzero, but the factorization was not started before.

BASICLU_ERROR_invalid_argument

The matrix is invalid (a column has a negative number of entries,

a row index is out of range, or a column has duplicate entries).

BASICLU_REALLOCATE

Factorization requires more memory in Li,Lx and/or Ui,Ux and/or

Wi,Wx. The number of additional elements in each of the array pairs

required for the next pivot operation is given by:

xstore[BASICLU_ADD_MEMORYL] >= 0

xstore[BASICLU_ADD_MEMORYU] >= 0

xstore[BASICLU_ADD_MEMORYW] >= 0

The user must reallocate the arrays for which additional memory is

required. It is recommended to reallocate for the requested number

of additional elements plus some extra space (e.g. 0.5 times the

current array length). The new array lengths must be provided in

xstore[BASICLU_MEMORYL]: length of Li and Lx

xstore[BASICLU_MEMORYU]: length of Ui and Ux

xstore[BASICLU_MEMORYW]: length of Wi and Wx

basiclu_factorize() can be called again with c0ntinue not equal to

zero to continue the factorization.

xstore[BASICLU_MATRIX_NZ] number of nonzeros in B

xstore[BASICLU_MATRIX_ONENORM]

xstore[BASICLU_MATRIX_INFNORM] 1-norm and inf-norm of the input matrix

after replacing dependent columns by unit

columns.

xstore[BASICLU_RANK] number of pivot steps performed

7

xstore[BASICLU_BUMP_SIZE] dimension of matrix after removing singletons

xstore[BASICLU_BUMP_NZ] # nonzeros in matrix after removing singletons

xstore[BASICLU_NSEARCH_PIVOT] total # columns/rows searched for pivots

xstore[BASICLU_NEXPAND] # columns/rows which had to be appended to the end

of the workspace for the rank-1 update

xstore[BASICLU_NGARBAGE] # garbage collections

xstore[BASICLU_FACTOR_FLOPS] # floating point operations performed,

counting multiply-add as one flop

xstore[BASICLU_TIME_SINGLETONS] wall clock time for removing the initial

triangular factors

xstore[BASICLU_TIME_SEARCH_PIVOT] wall clock time for Markowitz search

xstore[BASIClU_TIME_ELIM_PIVOT] wall clock time for pivot elimination

xstore[BASICLU_RESIDUAL_TEST]

An estimate for numerical stability of the factorization.

xstore[BASICLU_RESIDUAL_TEST] is the maximum of the scaled residuals

||b-Bx|| / (||b|| + ||B||*||x||)

and

||c-B’y|| / (||c|| + ||B’||*||y||),

where x=B\b and y=B’\c are computed from the LU factors, b and c

have components +/-1 that are chosen to make x respectively y large,

and ||.|| is the 1-norm. Here B is the input matrix after replacing

dependent columns by unit columns.

If xstore[BASICLU_RESIDUAL_TEST] > 1e-12, say, the factorization is

numerically unstable. (This is independent of the condition number

of B.) In this case tightening the relative pivot tolerance and

refactorizing is appropriate.

xstore[BASICLU_NORM_L]

xstore[BASICLU_NORM_U] 1-norm of L and U.

xstore[BASICLU_NORMEST_LINV]

xstore[BASICLU_NORMEST_UINV] Estimated 1-norm of L^{-1} and U^{-1},

computed by the LINPACK algorithm.

xstore[BASICLU_CONDEST_L]

xstore[BASICLU_CONDEST_U] Estimated 1-norm condition number of L and U.

8

3.3 basiclu get factors

lu_int basiclu_get_factors

(

lu_int istore[],

double xstore[],

lu_int Li[],

double Lx[],

lu_int Ui[],

double Ux[],

lu_int Wi[],

double Wx[],

lu_int rowperm[],

lu_int colperm[],

lu_int Lcolptr[],

lu_int Lrowidx[],

double Lvalue[],

lu_int Ucolptr[],

lu_int Urowidx[],

double Uvalue[]

);

Purpose:

Extract the row and column permutation and the LU factors. This routine can

be used only after basiclu_factorize() has completed and before a call to

basiclu_update(). At that point the factorized form of matrix B is

B[rowperm,colperm] = L*U,

where L is unit lower triangular and U is upper triangular. If the

factorization was singular (rank < m), then columns colperm[rank..m-1]

of B have been replaced by unit columns with entry 1 in position

rowperm[rank..m-1].

basiclu_get_factors() is intended when the user needs direct access to the

matrix factors. It is not required to solve linear systems with the factors

(see basiclu_solve_dense() and basiclu_solve_sparse() instead).

Return:

BASICLU_ERROR_invalid_store if istore, xstore do not hold a BASICLU

instance. In this case xstore[BASICLU_STATUS] is not set.

Otherwise return the status code. See xstore[BASICLU_STATUS] below.

Arguments:

lu_int istore[]

double xstore[]

lu_int Li[]

double Lx[]

lu_int Ui[]

double Ux[]

lu_int Wi[]

double Wx[]

The BASICLU instance after basiclu_factorize() has completed.

lu_int rowperm[m]

Returns the row permutation. If the row permutation is not required,

then NULL can be passed (this is not an error).

lu_int colperm[m]

9

Returns the column permutation. If the column permutation is not

required, then NULL can be passed (this is not an error).

lu_int Lcolptr[m+1]

lu_int Lrowidx[m+Lnz]

double Lvalue[m+Lnz], where Lnz = xstore[BASICLU_LNZ]

If all three arguments are not NULL, then they are filled with L in

compressed column form. The indices in each column are sorted with the

unit diagonal element at the front.

If any of the three arguments is NULL, then L is not returned

(this is not an error).

lu_int Ucolptr[m+1]

lu_int Urowidx[m+Unz]

double Uvalue[m+Unz], where Unz = xstore[BASICLU_UNZ]

If all three arguments are not NULL, then they are filled with U in

compressed column form. The indices in each column are sorted with the

diagonal element at the end.

If any of the three arguments is NULL, then U is not returned

(this is not an error).

Info:

xstore[BASICLU_STATUS]: status code.

BASICLU_OK

The requested quantities have been returned successfully.

BASICLU_ERROR_argument_missing

One or more of the mandatory pointer/array arguments are NULL.

BASICLU_ERROR_invalid_call

The BASICLU instance does not hold a fresh factorization (either

basiclu_factorize() has not completed or basiclu_update() has been

called in the meanwhile).

10

3.4 basiclu solve dense

lu_int basiclu_solve_dense

(

lu_int istore[],

double xstore[],

lu_int Li[],

double Lx[],

lu_int Ui[],

double Ux[],

lu_int Wi[],

double Wx[],

const double rhs[],

double lhs[],

char trans

);

Purpose:

Given the factorization computed by basiclu_factorize() or basiclu_update()

and the dense right-hand side, rhs, solve a linear system for the solution

lhs.

Return:

BASICLU_ERROR_invalid_store if istore, xstore do not hold a BASICLU

instance. In this case xstore[BASICLU_STATUS] is not set.

Otherwise return the status code. See xstore[BASICLU_STATUS] below.

Arguments:

lu_int istore[]

double xstore[]

lu_int Li[]

double Lx[]

lu_int Ui[]

double Ux[]

lu_int Wi[]

double Wx[]

Factorization computed by basiclu_factorize() or basiclu_update().

const double rhs[m]

The right-hand side vector.

double lhs[m]

Uninitialized on entry. On return lhs holds the solution to the linear

system.

lhs and rhs are allowed to overlap. To overwrite rhs with the solution

pass pointers to the same array.

char trans

Defines which system to solve. ’t’ or ’T’ for the transposed system, any

other character for the forward system.

Info:

xstore[BASICLU_STATUS]: status code.

BASICLU_OK

11

The linear system has been successfully solved.

BASICLU_ERROR_argument_missing

One or more of the pointer/array arguments are NULL.

BASICLU_ERROR_invalid_call

The factorization is invalid.

12

3.5 basiclu solve sparse

lu_int basiclu_solve_sparse

(

lu_int istore[],

double xstore[],

lu_int Li[],

double Lx[],

lu_int Ui[],

double Ux[],

lu_int Wi[],

double Wx [],

lu_int nzrhs,

const lu_int irhs[],

const double xrhs[],

lu_int *p_nzlhs,

lu_int ilhs[],

double lhs[],

char trans

);

Purpose:

Given the factorization computed by basiclu_factorize() or basiclu_update()

and the sparse right-hand side, rhs, solve a linear system for the solution

lhs.

Return:

BASICLU_ERROR_invalid_store if istore, xstore do not hold a BASICLU

instance. In this case xstore[BASICLU_STATUS] is not set.

Otherwise return the status code. See xstore[BASICLU_STATUS] below.

Arguments:

lu_int istore[]

double xstore[]

lu_int Li[]

double Lx[]

lu_int Ui[]

double Ux[]

lu_int Wi[]

double Wx[]

Factorization computed by basiclu_factorize() or basiclu_update().

lu_int nzrhs

const lu_int irhs[nzrhs]

const double xrhs[nzrhs]

The right-hand side vector in compressed format. irhs[0..nzrhs-1] are

the indices of nonzeros and xrhs[0..nzrhs-1] the corresponding values.

irhs must not contain duplicates.

lu_int *p_nzlhs

lu_int ilhs[m]

lu_int lhs[m]

*p_nzlhs is uninitialized on entry. On return *p_nzlhs holds

the number of nonzeros in the solution.

The contents of ilhs is uninitialized on entry. On return

ilhs[0..*p_nzlhs-1] holds the indices of nonzeros in the solution.

The contents lhs must be initialized to zero on entry. On return

the solution is scattered into lhs.

13

char trans

Defines which system to solve. ’t’ or ’T’ for the transposed system,

any other character for the forward system.

Parameters:

xstore[BASICLU_SPARSE_THRESHOLD]

Defines which method is used for solving a triangular system. A

triangular solve can be done either by the two phase method of Gilbert

and Peierls ("sparse solve") or by a sequential pass through the vector

("sequential solve").

Solving B*x=b requires two triangular solves. The first triangular solve

is done sparse. The second triangular solve is done sparse if its

right-hand side has not more than m * xstore[BASICLU_SPARSE_THRESHOLD]

nonzeros. Otherwise the sequential solve is used.

Default: 0.05

xstore[BASICLU_DROP_TOLERANCE]

Nonzeros which magnitude is less than or equal to the drop tolerance

are removed after each triangular solve. Default: 1e-20

Info:

xstore[BASICLU_STATUS]: status code.

BASICLU_OK

The linear system has been successfully solved.

BASICLU_ERROR_argument_missing

One or more of the pointer/array arguments are NULL.

BASICLU_ERROR_invalid_call

The factorization is invalid.

BASICLU_ERROR_invalid_argument

The right-hand side is invalid (nzrhs < 0 or nzrhs > m or one or

more indices out of range).

14

3.6 basiclu solve for update

lu_int basiclu_solve_for_update

(

lu_int istore[],

double xstore[],

lu_int Li[],

double Lx[],

lu_int Ui[],

double Ux[],

lu_int Wi[],

double Wx[],

lu_int nzrhs,

const lu_int irhs[],

const double xrhs[],

lu_int *p_nzlhs,

lu_int ilhs[],

double lhs[],

char trans

);

Purpose:

Given the factorization computed by basiclu_factorize() or basiclu_update(),

solve a linear system in preparation to update the factorization.

When the forward system is solved, then the right-hand side is the column

to be inserted into the factorized matrix. When the transposed system is

solved, then the right-hand side is a unit vector with entry 1 in position

of the column to be replaced in the factorized matrix.

For BASICLU to prepare the update, it is sufficient to compute only a

partial solution. If the left-hand side is not requested by the user (see

below), then only one triangular solve is done. If the left-hand side is

requested, then a second triangular solve is required.

Return:

BASICLU_ERROR_invalid_store if istore, xstore do not hold a BASICLU

instance. In this case xstore[BASICLU_STATUS] is not set.

Otherwise return the status code. See xstore[BASICLU_STATUS] below.

Arguments:

lu_int istore[]

double xstore[]

lu_int Li[]

double Lx[]

lu_int Ui[]

double Ux[]

lu_int Wi[]

double Wx[]

Factorization computed by basiclu_factorize() or basiclu_update().

lu_int nzrhs

const lu_int irhs[nzrhs]

const double xrhs[nzrhs]

The right-hand side vector in compressed format.

When the forward system is solved, irhs[0..nzrhs-1] are the indices of

nonzeros and xrhs[0..nzrhs-1] the corresponding values. irhs must not

contain duplicates.

15

When the transposed system is solved, the right-hand side is a unit

vector with entry 1 in position irhs[0]. nzrhs, xrhs and elements of

irhs other than irhs[0] are not accessed. xrhs can be NULL.

lu_int *p_nzlhs

lu_int ilhs[m]

lu_int lhs[m]

If any of p_nzlhs, ilhs or lhs is NULL, then the solution to the linear

system is not requested. In this case only the update is prepared.

Otherwise:

*p_nzlhs is uninitialized on entry. On return *p_nzlhs holds

the number of nonzeros in the solution.

The contents of ilhs is uninitialized on entry. On return

ilhs[0..*p_nzlhs-1] holds the indices of nonzeros in the solution.

The contents of lhs must be initialized to zero on entry. On return

the solution is scattered into lhs.

char trans

Defines which system to solve. ’t’ or ’T’ for the transposed system,

any other character for the forward system.

Parameters:

xstore[BASICLU_MEMORYL]: length of Li and Lx

xstore[BASICLU_MEMORYU]: length of Ui and Ux

xstore[BASICLU_MEMORYW]: length of Wi and Wx

xstore[BASICLU_SPARSE_THRESHOLD]

Defines which method is used for solving a triangular system. A

triangular solve can be done either by the two phase method of Gilbert

and Peierls ("sparse solve") or by a sequential pass through the vector

("sequential solve").

When the solution to the linear system is requested, then two triangular

systems are solved. The first triangular solve is done sparse. The

second triangular solve is done sparse if its right-hand side has not

more than m * xstore[BASICLU_SPARSE_THRESHOLD] nonzeros. Otherwise the

sequential solve is used.

When the solution to the linear system is not requested, then this

parameter has no effect.

Default: 0.05

xstore[BASICLU_DROP_TOLERANCE]

Nonzeros which magnitude is less than or equal to the drop tolerance

are removed after each triangular solve. Default: 1e-20

Info:

xstore[BASICLU_STATUS]: status code.

BASICLU_OK

The updated has been successfully prepared and, if requested, the

solution to the linear system has been computed.

BASICLU_ERROR_argument_missing

16

One or more of the mandatory pointer/array arguments are NULL.

BASICLU_ERROR_invalid_call

The factorization is invalid.

BASICLU_ERROR_maximum_updates

There have already been m Forrest-Tomlin updates, see

xstore[BASICLU_NFORREST]. The factorization cannot be updated any

more and must be recomputed by basiclu_factorize().

The solution to the linear system has not been computed.

BASICLU_ERROR_invalid_argument

The right-hand side is invalid (forward system: nzrhs < 0 or

nzrhs > m or one or more indices out of range; backward system:

irhs[0] out of range).

BASICLU_REALLOCATE

The solve was aborted because of insufficient memory in Li,Lx or

Ui,Ux to store data for basiclu_update(). The number of additional

elements required is given by

xstore[BASICLU_ADD_MEMORYL] >= 0

xstore[BASICLU_ADD_MEMORYU] >= 0

The user must reallocate the arrays for which additional memory is

required. It is recommended to reallocate for the requested number

of additional elements plus some extra space for further updates

(e.g. 0.5 times the current array length). The new array lengths

must be provided in

xstore[BASICLU_MEMORYL]: length of Li and Lx

xstore[BASICLU_MEMORYU]: length of Ui and Ux

basiclu_solve_for_update() will start from scratch in the next call.

17

3.7 basiclu update

lu_int basiclu_update

(

lu_int istore[],

double xstore[],

lu_int Li[],

double Lx[],

lu_int Ui[],

double Ux[],

lu_int Wi[],

double Wx[],

double xtbl

);

Purpose:

Update the factorization to replace one column of the factorized matrix.

A call to basiclu_update() must be preceded by calls to

basiclu_solve_for_update() to provide the column to be inserted and the

index of the column to be replaced.

The column to be inserted is defined as the right-hand side in the last call

to basiclu_solve_for_update() in which the forward system was solved.

The index of the column to be replaced is defined by the unit vector in the

last call to basiclu_solve_for_update() in which the transposed system was

solved.

Return:

BASICLU_ERROR_invalid_store if istore, xstore do not hold a BASICLU

instance. In this case xstore[BASICLU_STATUS] is not set.

Otherwise return the status code. See xstore[BASICLU_STATUS] below.

Arguments:

lu_int istore[]

double xstore[]

lu_int Li[]

double Lx[]

lu_int Ui[]

double Ux[]

lu_int Wi[]

double Wx[]

Factorization computed by basiclu_factorize() or basiclu_update().

double xtbl

This is an optional argument to monitor numerical stability. xtbl can be

either of

(a) element j0 of the solution to the forward system computed by

basiclu_solve_for_update(), where j0 is the column to be replaced;

(b) the dot product of the incoming column and the solution to the

transposed system computed by basiclu_solve_for_update().

In either case xstore[BASICLU_PIVOT_ERROR] (see below) has a defined

value. If monitoring stability is not desired, xtbl can be any value.

Parameters:

xstore[BASICLU_MEMORYL]: length of Li and Lx

18

xstore[BASICLU_MEMORYU]: length of Ui and Ux

xstore[BASICLU_MEMORYW]: length of Wi and Wx

xstore[BASICLU_DROP_TOLERANCE]

Nonzeros which magnitude is less than or equal to the drop tolerance

are removed from the row eta matrix. Default: 1e-20

Info:

xstore[BASICLU_STATUS]: status code.

BASICLU_OK

The update has successfully completed.

BASICLU_ERROR_argument_missing

One or more of the pointer/array arguments are NULL.

BASICLU_ERROR_invalid_call

The factorization is invalid or the update was not prepared by two

calls to basiclu_solve_for_update().

BASICLU_REALLOCATE

Insufficient memory in Wi,Wx. The number of additional elements

required is given by

xstore[BASICLU_ADD_MEMORYW] > 0

The user must reallocate Wi,Wx. It is recommended to reallocate for

the requested number of additional elements plus some extra space

for further updates (e.g. 0.5 times the current array length). The

new array length must be provided in

xstore[BASICLU_MEMORYW]: length of Wi and Wx

basiclu_update will start from scratch in the next call.

BASICLU_ERROR_singular_update

The updated factorization would be (numerically) singular. No update

has been computed and the old factorization is still valid.

xstore[BASICLU_PIVOT_ERROR]

When xtbl was given (see above), then xstore[BASICLU_PIVOT_ERROR] is a

measure for numerical stability. It is the difference between two

computations of the new pivot element relative to the new pivot element.

A value larger than 1e-10 indicates numerical instability and suggests

refactorization (and possibly tightening the pivot tolerance).

xstore[BASICLU_MAX_ETA]

The maximum entry (in absolute value) in the eta vectors from the

Forrest-Tomlin update. A large value, say > 1e6, indicates that pivoting

on diagonal element was unstable and refactorization might be necessary.

19

4 High level C interface

The high level C interface consists of wrapper functions around the low level interface
which do memory allocation. They maintain the arrays used by the low level interface
inside a struct basiclu object. To use the high level C interface, user code must in-
clude basiclu.h. Defined constants start with BASICLU and function names start with
basiclu obj .

20

4.1 basiclu object

struct basiclu_object

{

lu_int *istore;

double *xstore;

lu_int *Li, *Ui, *Wi;

double *Lx, *Ux, *Wx;

double *lhs;

lu_int *ilhs;

lu_int nzlhs;

double realloc_factor;

};

A variable of type struct basiclu_object must be defined in user code. Its

members are set and maintained by basiclu_obj_* routines. User code should only

access the following members:

xstore (read/write)

set parameters and get info values

lhs, ilhs, nzlhs (read only)

holds solution after solve_sparse() and solve_for_update()

realloc_factor (read/write)

Arrays are reallocated for max(realloc_factor, 1.0) times the

required size. Default: 1.5

21

4.2 basiclu obj initialize

lu_int basiclu_obj_initialize

(

struct basiclu_object *obj,

lu_int m

);

Purpose:

Initialize a BASICLU object. When m is positive, then *obj is initialized to

process matrices of dimension m. When m is zero, then *obj is initialized to

a "null" object, which cannot be used for factorization, but can be passed

to basiclu_obj_free().

This routine must be called once before passing obj to any other

basiclu_obj_ routine. When obj is initialized to a null object, then the

routine can be called again to reinitialize obj.

Return:

BASICLU_OK

*obj successfully initialized.

BASICLU_ERROR_argument_missing

obj is NULL.

BASICLU_ERROR_invalid_argument

m is negative.

BASICLU_ERROR_out_of_memory

insufficient memory to initialize object.

Arguments:

struct basiclu_object *obj

Pointer to the object to be initialized.

lu_int m

The dimension of matrices which can be processed, or 0.

22

4.3 basiclu obj get dim

lu_int basiclu_obj_get_dim

(

struct basiclu_object *obj

);

Purpose:

Returns the dimension for which the object was initialized or 0 when obj is

NULL.

23

4.4 basiclu obj factorize

lu_int basiclu_obj_factorize

(

struct basiclu_object *obj,

const lu_int *Bbegin,

const lu_int *Bend,

const lu_int *Bi,

const double *Bx

);

Purpose:

Call basiclu_factorize() on a BASICLU object.

Return:

BASICLU_ERROR_invalid_object

obj is NULL or initialized to a null object.

BASICLU_ERROR_out_of_memory

reallocation failed because of insufficient memory.

Other return codes are passed through from basiclu_factorize().

Arguments:

struct basiclu_object *obj

Pointer to an initialized BASICLU object.

The other arguments are passed through to basiclu_factorize().

24

4.5 basiclu obj get factors

lu_int basiclu_obj_get_factors

(

struct basiclu_object *obj,

lu_int rowperm[],

lu_int colperm[],

lu_int Lcolptr[],

lu_int Lrowidx[],

double Lvalue[],

lu_int Ucolptr[],

lu_int Urowidx[],

double Uvalue[]

);

Purpose:

Call basiclu_get_factors() on a BASICLU object.

Return:

BASICLU_ERROR_invalid_object

obj is NULL or initialized to a null object.

Other return codes are passed through from basiclu_get_factors().

Arguments:

struct basiclu_object *obj

Pointer to an initialized BASICLU object.

The other arguments are passed through to basiclu_get_factors().

25

4.6 basiclu obj solve dense

lu_int basiclu_obj_solve_dense

(

struct basiclu_object *obj,

const double rhs[],

double lhs[],

char trans

);

Purpose:

Call basiclu_solve_dense() on a BASICLU object.

Return:

BASICLU_ERROR_invalid_object

obj is NULL or initialized to a null object.

Other return codes are passed through from basiclu_solve_dense().

Arguments:

struct basiclu_object *obj

Pointer to an initialized BASICLU object.

The other arguments are passed through to basiclu_solve_dense().

26

4.7 basiclu obj solve sparse

lu_int basiclu_obj_solve_sparse

(

struct basiclu_object *obj,

lu_int nzrhs,

const lu_int irhs[],

const double xrhs[],

char trans

);

Purpose:

Call basiclu_solve_sparse() on a BASICLU object. On success, the solution

is provided in obj->lhs and the nonzero pattern is stored in

obj->ilhs[0..obj->nzlhs-1].

Return:

BASICLU_ERROR_invalid_object

obj is NULL or initialized to a null object.

Other return codes are passed through from basiclu_solve_sparse().

Arguments:

struct basiclu_object *obj

Pointer to an initialized BASICLU object.

The other arguments are passed through to basiclu_solve_sparse().

27

4.8 basiclu obj solve for update

lu_int basiclu_obj_solve_for_update

(

struct basiclu_object *obj,

lu_int nzrhs,

const lu_int irhs[],

const double xrhs[],

char trans,

lu_int want_solution

);

Purpose:

Call basiclu_solve_for_update() on a BASICLU object. On success, if the

solution was requested, it is provided in obj->lhs and the nonzero pattern

is stored in obj->ilhs[0..obj->nzlhs-1].

Return:

BASICLU_ERROR_invalid_object

obj is NULL or initialized to a null object.

BASICLU_ERROR_out_of_memory

reallocation failed because of insufficient memory.

Other return codes are passed through from basiclu_solve_for_update().

Arguments:

struct basiclu_object *obj

Pointer to an initialized BASICLU object.

lu_int want_solution

Nonzero to compute the solution to the linear system,

zero to only prepare the update.

The other arguments are passed through to basiclu_solve_for_update().

28

4.9 basiclu obj update

lu_int basiclu_obj_update

(

struct basiclu_object *obj,

double xtbl

);

Purpose:

Call basiclu_update() on a BASICLU object.

Return:

BASICLU_ERROR_invalid_object

obj is NULL or initialized to a null object.

BASICLU_ERROR_out_of_memory

reallocation failed because of insufficient memory.

Other return codes are passed through from basiclu_update().

Arguments:

struct basiclu_object *obj

Pointer to an initialized BASICLU object.

The other arguments are passed through to basiclu_update().

29

4.10 basiclu obj free

void basiclu_obj_free

(

struct basiclu_object *obj

);

Purpose:

Free memory allocated from a BASICLU object. The object must have been

initialized before by basiclu_obj_initialize(). Subsequent calls to

basiclu_obj_free() will do nothing.

Arguments:

struct basiclu_object *obj

Pointer to the object which memory is to be freed. When obj is NULL,

then the routine does nothing.

30

4.11 basiclu obj maxvolume

lu_int basiclu_obj_maxvolume

(

struct basiclu_object *obj,

lu_int ncol,

const lu_int Ap[],

const lu_int Ai[],

const double Ax[],

lu_int basis[],

lu_int isbasic[],

double volumetol,

lu_int *p_nupdate

);

Purpose:

Make one pass over the columns of a rectangular (ncol >= nrow) matrix and

pivot each nonbasic column into the basis when it increases the volume (i.e.

the absolute value of the determinant) of the basis matrix. This is one main

loop of the "maximum volume" algorithm described in [1,2].

[1] C. T. Pan, "On the existence and computation of rank-revealing LU

factorizations". Linear Algebra Appl., 316(1-3), pp. 199-222, 2000

[2] S. A. Goreinov, I. V. Oseledets, D. V. Savostyanov, E. E. Tyrtyshnikov,

N. L. Zamarashkin, "How to find a good submatrix". In "Matrix methods:

theory, algorithms and applications", pp. 247-256. World Sci. Publ.,

Hackensack, NJ, 2010.

Return:

BASICLU_ERROR_invalid_argument when volumetol is less than 1.0.

BASICLU_ERROR_out_of_memory when memory allocation in this function failed.

The return code from a basiclu_obj_* function called when not BASICLU_OK.

(Note that BASICLU_WARNING_singular_matrix means that the algorithm failed.)

BASICLU_OK otherwise.

Arguments:

struct basiclu_object *obj

Pointer to an initialized BASICLU object. The dimension of the object

specifies the number of rows of the matrix.

lu_int ncol

const lu_int Ap[ncol+1]

const lu_int Ai[]

const double Ax[]

Matrix A in compressed sparse column format. Column j contains elements

Ai[Ap[j] .. Ap[j+1]-1], Ax[Ap[j] .. Ap[j+1]-1].

The columns must not contain duplicate row indices. The row indices per

column need not be sorted.

lu_int basis[nrow]

On entry holds the column indices of A that form the initial basis. On

return holds the updated basis. A basis defines a square nonsingular

submatrix of A. If the initial basis is (numerically) singular, then the

initial LU factorization will fail and BASICLU_WARNING_singular_matrix

is returned.

31

lu_int isbasic[ncol]

This array must be consistent with basis[] on entry, and is consistent

on return. isbasic[j] must be nonzero iff column j appears in the basis.

double volumetol

A column is pivoted into the basis when it increases the absolute value

of the determinant of the basis matrix by more than a factor volumetol.

This parameter must be >= 1.0. In pratcice typical values are 2.0, 10.0

or even 100.0. The closer the tolerances to 1.0, the more basis changes

will usually be necessary to find a maximum volume basis for this

tolerance (using repeated calls to basiclu_obj_maxvolume(), see below).

lu_int *p_nupdate

On return *p_nupdate holds the number of basis updates performed. When

this is zero and BASICLU_OK is returned, then the volume of the initial

basis is locally (within one basis change) maximum up to a factor

volumetol. To find such a basis, basiclu_obj_maxvolume() must be called

repeatedly starting from an arbitrary basis until *p_nupdate is zero.

This will happen eventually because each basis update strictly increases

the volume of the basis matrix. Hence a basis cannot repeat.

p_nupdate can be NULL, in which case it is not accessed. This is not an

error condition. The number of updates performed can be obtained as the

increment to obj->xstore[BASICLU_NUPDATE_TOTAL] caused by the call to

basiclu_obj_maxvolume().

32

5 Julia interface

BASICLU can be used from the Julia programming language. The easiest way is to install
the artifact basiclu jll, which provides a precompiled library. Alternatively the code can
be compiled from source as described in Section 2. In this case ensure that int64 t is used
as integer type (this is the default). To use the locally compiled library, environment variable
JULIA BASICLU LIBRARY PATH must point to the lib/ directory.

The following is an example for a Julia program using BASICLU. See also the documen-
tation of the module functions and Julia/test.jl.

include("BASICLU/Julia/basiclu.jl")

m = 1000

obj = basiclu.basiclu_object(m)

B = sprand(m,m,5e-3) + I # get a sparse matrix

basiclu.factorize(obj, B)

rhs = randn(m) # get a right-hand side

lhs = basiclu.solve(obj, rhs, ’N’)

res = norm(B*lhs-rhs,Inf) # compute residual

col = sparsevec([1], [1.0], m) # vector to be inserted into B

lhs = basiclu.solve_for_update(obj, col, getsol=true)

vmax, j = findmax(abs.(lhs))

piv = lhs[j]

basiclu.solve_for_update(obj, j) # prepare to replace column j of B

piverr = basiclu.update(obj, piv)

lhs = basiclu.solve(obj, rhs, ’N’)

B[:,j] = col

res = norm(B*lhs-rhs,Inf)

33

