// basisu_tool.cpp // Copyright (C) 2019-2022 Binomial LLC. All Rights Reserved. // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #if _MSC_VER // For sprintf(), strcpy() #define _CRT_SECURE_NO_WARNINGS (1) #endif #include "transcoder/basisu.h" #include "transcoder/basisu_transcoder_internal.h" #include "encoder/basisu_enc.h" #include "encoder/basisu_etc.h" #include "encoder/basisu_gpu_texture.h" #include "encoder/basisu_frontend.h" #include "encoder/basisu_backend.h" #include "encoder/basisu_comp.h" #include "transcoder/basisu_transcoder.h" #include "encoder/basisu_ssim.h" #include "encoder/basisu_opencl.h" #define MINIZ_HEADER_FILE_ONLY #define MINIZ_NO_ZLIB_COMPATIBLE_NAMES #include "encoder/basisu_miniz.h" #ifdef _WIN32 #define WIN32_LEAN_AND_MEAN #include #endif // Set BASISU_CATCH_EXCEPTIONS if you want exceptions to crash the app, otherwise main() catches them. #ifndef BASISU_CATCH_EXCEPTIONS #define BASISU_CATCH_EXCEPTIONS 0 #endif using namespace basisu; using namespace buminiz; #define BASISU_TOOL_VERSION "1.16.4" enum tool_mode { cDefault, cCompress, cValidate, cInfo, cUnpack, cCompare, cVersion, cBench, cCompSize, cTest, cCLBench, cSplitImage, cCombineImages }; static void print_usage() { printf("\nUsage: basisu filename [filename ...] \n"); puts("\n" "The default mode is compression of one or more PNG/BMP/TGA/JPG files to a .basis file. Alternate modes:\n" " -unpack: Use transcoder to unpack .basis file to one or more .ktx/.png files\n" " -validate: Validate and display information about a .basis file\n" " -info: Display high-level information about a .basis file\n" " -compare: Compare two PNG/BMP/TGA/JPG images specified with -file, output PSNR and SSIM statistics and RGB/A delta images\n" " -version: Print basisu version and exit\n" "Unless an explicit mode is specified, if one or more files have the .basis extension this tool defaults to unpack mode.\n" "\n" "Important: By default, the compressor assumes the input is in the sRGB colorspace (like photos/albedo textures).\n" "If the input is NOT sRGB (like a normal map), be sure to specify -linear for less artifacts. Depending on the content type, some experimentation may be needed.\n" "\n" "Filenames prefixed with a @ symbol are read as filename listing files. Listing text files specify which actual filenames to process (one filename per line).\n" "\n" "Options:\n" " -opencl: Enable OpenCL usage\n" " -opencl_serialize: Serialize all calls to the OpenCL driver (to work around buggy drivers, only useful with -parallel)\n" " -parallel: Compress multiple textures simumtanously (one per thread), instead of one at a time. Compatible with OpenCL mode. This is much faster, but in OpenCL mode the driver is pushed harder, and the CLI output will be jumbled.\n" " -ktx2: Write .KTX2 ETC1S/UASTC files instead of .basis files. By default, UASTC files will be compressed using Zstandard unless -ktx2_no_zstandard is specified.\n" " -ktx2_no_zstandard: Don't compress UASTC texture data using Zstandard, store it uncompressed instead.\n" " -ktx2_zstandard_level X: Set ZStandard compression level to X (see Zstandard documentation, default level is 6)\n" " -ktx2_animdata_duration X: Set KTX2animData duration field to integer value X (only valid/useful for -tex_type video, default is 1)\n" " -ktx2_animdata_timescale X: Set KTX2animData timescale field to integer value X (only valid/useful for -tex_type video, default is 15)\n" " -ktx2_animdata_loopcount X: Set KTX2animData loopcount field to integer value X (only valid/useful for -tex_type video, default is 0)\n" " -file filename.png/bmp/tga/jpg/qoi: Input image filename, multiple images are OK, use -file X for each input filename (prefixing input filenames with -file is optional)\n" " -alpha_file filename.png/bmp/tga/jpg/qoi: Input alpha image filename, multiple images are OK, use -file X for each input filename (must be paired with -file), images converted to REC709 grayscale and used as input alpha\n" " -multifile_printf: printf() format strint to use to compose multiple filenames\n" " -multifile_first: The index of the first file to process, default is 0 (must specify -multifile_printf and -multifile_num)\n" " -multifile_num: The total number of files to process.\n" " -q X: Set ETC1S quality level, 1-255, default is 128, lower=better compression/lower quality/faster, higher=less compression/higher quality/slower, default is 128. For even higher quality, use -max_endpoints/-max_selectors.\n" " -linear: Use linear colorspace metrics (instead of the default sRGB), and by default linear (not sRGB) mipmap filtering.\n" " -output_file filename: Output .basis/.ktx filename\n" " -output_path: Output .basis/.ktx files to specified directory.\n" " -debug: Enable codec debug print to stdout (slightly slower).\n" " -verbose: Same as -debug (debug output to stdout).\n" " -debug_images: Enable codec debug images (much slower).\n" " -stats: Compute and display image quality metrics (slightly slower).\n" " -tex_type <2d, 2darray, 3d, video, cubemap>: Set Basis file header's texture type field. Cubemap arrays require multiples of 6 images, in X+, X-, Y+, Y-, Z+, Z- order, each image must be the same resolutions.\n" " 2d=arbitrary 2D images, 2darray=2D array, 3D=volume texture slices, video=video frames, cubemap=array of faces. For 2darray/3d/cubemaps/video, each source image's dimensions and # of mipmap levels must be the same.\n" " For video, the .basis file will be written with the first frame being an I-Frame, and subsequent frames being P-Frames (using conditional replenishment). Playback must always occur in order from first to last image.\n" " -framerate X: Set framerate in .basis header to X/frames sec.\n" " -individual: Process input images individually and output multiple .basis/.ktx2 files (not as a texture array - this is now the default as of v1.16)\n" " -tex_array: Process input images as a single texture array and write a single .basis/.ktx2 file (the former default before v1.16)\n" " -comp_level X: Set ETC1S encoding speed vs. quality tradeoff. Range is 0-6, default is 1. Higher values=MUCH slower, but slightly higher quality. Higher levels intended for videos. Use -q first!\n" " -fuzz_testing: Use with -validate: Disables CRC16 validation of file contents before transcoding\n" "\nUASTC options:\n" " -uastc: Enable UASTC texture mode, instead of the default ETC1S mode. Significantly higher texture quality, but larger files. (Note that UASTC .basis files must be losslessly compressed by the user.)\n" " -uastc_level: Set UASTC encoding level. Range is [0,4], default is 2, higher=slower but higher quality. 0=fastest/lowest quality, 3=slowest practical option, 4=impractically slow/highest achievable quality\n" " -uastc_rdo_l X: Enable UASTC RDO post-processing and set UASTC RDO quality scalar (lambda) to X. Lower values=higher quality/larger LZ\n" " compressed files, higher values=lower quality/smaller LZ compressed files. Good range to try is [.25-10].\n" " Note: Previous versons used the -uastc_rdo_q option, which was removed because the RDO algorithm was changed.\n" " -uastc_rdo_d X: Set UASTC RDO dictionary size in bytes. Default is 4096, max is 65536. Lower values=faster, but less compression.\n" " -uastc_rdo_b X: Set UASTC RDO max smooth block error scale. Range is [1,300]. Default is 10.0, 1.0=disabled. Larger values suppress more artifacts (and allocate more bits) on smooth blocks.\n" " -uastc_rdo_s X: Set UASTC RDO max smooth block standard deviation. Range is [.01,65536]. Default is 18.0. Larger values expand the range of blocks considered smooth.\n" " -uastc_rdo_f: Don't favor simpler UASTC modes in RDO mode.\n" " -uastc_rdo_m: Disable RDO multithreading (slightly higher compression, deterministic).\n" "\n" "More options:\n" " -test: Run an automated ETC1S/UASTC encoding and transcoding test. Returns EXIT_FAILURE if any failures\n" " -test_dir: Optional directory of test files. Defaults to \"../test_files\".\n" " -max_endpoints X: Manually set the max number of color endpoint clusters from 1-16128, use instead of -q\n" " -max_selectors X: Manually set the max number of color selector clusters from 1-16128, use instead of -q\n" " -y_flip: Flip input images vertically before compression\n" " -normal_map: Tunes codec parameters for better quality on normal maps (linear colorspace metrics, linear mipmap filtering, no selector RDO, no sRGB)\n" " -no_alpha: Always output non-alpha basis files, even if one or more inputs has alpha\n" " -force_alpha: Always output alpha basis files, even if no inputs has alpha\n" " -separate_rg_to_color_alpha: Separate input R and G channels to RGB and A (for tangent space XY normal maps)\n" " -swizzle rgba: Specify swizzle for the 4 input color channels using r, g, b and a (the -separate_rg_to_color_alpha flag is equivalent to rrrg)\n" " -renorm: Renormalize each input image before any further processing/compression\n" " -no_multithreading: Disable multithreading\n" " -max_threads X: Use at most X threads total when multithreading is enabled (this includes the main thread)\n" " -no_ktx: Disable KTX writing when unpacking (faster, less output files)\n" " -ktx_only: Only write KTX files when unpacking (faster, less output files)\n" " -write_out: Write 3dfx OUT files when unpacking FXT1 textures\n" " -format_only: Only unpack the specified format, by its numeric code.\n" " -etc1_only: Only unpack to ETC1, skipping the other texture formats during -unpack\n" " -disable_hierarchical_endpoint_codebooks: Disable hierarchical endpoint codebook usage, slower but higher quality on some compression levels\n" " -compare_ssim: Compute and display SSIM of image comparison (slow)\n" " -compare_plot: Display histogram plots in -compare mode\n" " -bench: UASTC benchmark mode, for development only\n" " -resample X Y: Resample all input textures to XxY pixels using a box filter\n" " -resample_factor X: Resample all input textures by scale factor X using a box filter\n" " -no_sse: Forbid all SSE instruction set usage\n" " -validate_etc1s: Validate internal ETC1S compressor's data structures during compression (slower, intended for development).\n" "\n" "Mipmap generation options:\n" " -mipmap: Generate mipmaps for each source image\n" " -mip_srgb: Convert image to linear before filtering, then back to sRGB\n" " -mip_linear: Keep image in linear light during mipmap filtering (i.e. do not convert to/from sRGB for filtering purposes)\n" " -mip_scale X: Set mipmap filter kernel's scale, lower=sharper, higher=more blurry, default is 1.0\n" " -mip_filter X: Set mipmap filter kernel, default is kaiser, filters: box, tent, bell, blackman, catmullrom, mitchell, etc.\n" " -mip_renorm: Renormalize normal map to unit length vectors after filtering\n" " -mip_clamp: Use clamp addressing on borders, instead of wrapping\n" " -mip_fast: Use faster mipmap generation (resample from previous mip, not always first/largest mip level). The default (as of 1/2021)\n" " -mip_slow: Always resample each mipmap level starting from the largest mipmap. Higher quality, but slower. Opposite of -mip_fast. Was the prior default before 1/2021.\n" " -mip_smallest X: Set smallest pixel dimension for generated mipmaps, default is 1 pixel\n" "By default, textures will be converted from sRGB to linear light before mipmap filtering, then back to sRGB (for the RGB color channels) unless -linear is specified.\n" "You can override this behavior with -mip_srgb/-mip_linear.\n" "\n" "Backend endpoint/selector RDO codec options:\n" " -no_selector_rdo: Disable backend's selector rate distortion optimizations (slightly faster, less noisy output, but lower quality per output bit)\n" " -selector_rdo_thresh X: Set selector RDO quality threshold, default is 1.25, lower is higher quality but less quality per output bit (try 1.0-3.0)\n" " -no_endpoint_rdo: Disable backend's endpoint rate distortion optimizations (slightly faster, less noisy output, but lower quality per output bit)\n" " -endpoint_rdo_thresh X: Set endpoint RDO quality threshold, default is 1.5, lower is higher quality but less quality per output bit (try 1.0-3.0)\n" "\n" "Set various fields in the Basis file header:\n" " -userdata0 X: Set 32-bit userdata0 field in Basis file header to X (X is a signed 32-bit int)\n" " -userdata1 X: Set 32-bit userdata1 field in Basis file header to X (X is a signed 32-bit int)\n" "\n" "Various command line examples:\n" " basisu x.png : Compress sRGB image x.png to x.basis using default settings (multiple filenames OK, use -tex_array if you want a tex array vs. multiple output files)\n" " basisu x.basis : Unpack x.basis to PNG/KTX files (multiple filenames OK)\n" " basisu -file x.png -mipmap -y_flip : Compress a mipmapped x.basis file from an sRGB image named x.png, Y flip each source image\n" " basisu -validate -file x.basis : Validate x.basis (check header, check file CRC's, attempt to transcode all slices)\n" " basisu -unpack -file x.basis : Validates, transcodes and unpacks x.basis to mipmapped .KTX and RGB/A .PNG files (transcodes to all supported GPU texture formats)\n" " basisu -q 255 -file x.png -mipmap -debug -stats : Compress sRGB x.png to x.basis at quality level 255 with compressor debug output/statistics\n" " basisu -linear -max_endpoints 16128 -max_selectors 16128 -file x.png : Compress non-sRGB x.png to x.basis using the largest supported manually specified codebook sizes\n" " basisu -comp_level 2 -max_selectors 8192 -max_endpoints 8192 -tex_type video -framerate 20 -multifile_printf \"x%02u.png\" -multifile_first 1 -multifile_count 20 : Compress a 20 sRGB source image video sequence (x01.png, x02.png, x03.png, etc.) to x01.basis\n" "\n" "Note: For video use, it's recommended you use a very powerful machine with many cores. Use -comp_level 2 or higher for better codebook\n" "generation, specify very large codebooks using -max_endpoints and -max_selectors, and reduce the default endpoint RDO threshold\n" "(-endpoint_rdo_thresh) to around 1.25. Videos may have mipmaps and alpha channels. Videos must always be played back by the transcoder\n" "in first to last image order.\n" "Video files currently use I-Frames on the first image, and P-Frames using conditional replenishment on subsequent frames.\n" "\nCompression level (-comp_level X) details:\n" " Level 0: Fastest, but has marginal quality and can be brittle on complex images. Avg. Y dB: 35.45\n" " Level 1: Hierarchical codebook searching, faster ETC1S encoding. 36.87 dB, ~1.4x slower vs. level 0. (This is the default setting.)\n" " Level 2: Use this or higher for video. Hierarchical codebook searching. 36.87 dB, ~1.4x slower vs. level 0. (This is the v1.12's default setting.)\n" " Level 3: Full codebook searching. 37.13 dB, ~1.8x slower vs. level 0. (Equivalent the the initial release's default settings.)\n" " Level 4: Hierarchical codebook searching, codebook k-means iterations. 37.15 dB, ~4x slower vs. level 0\n" " Level 5: Full codebook searching, codebook k-means iterations. 37.41 dB, ~5.5x slower vs. level 0. (Equivalent to the initial release's -slower setting.)\n" " Level 6: Full codebook searching, twice as many codebook k-means iterations, best ETC1 endpoint opt. 37.43 dB, ~12x slower vs. level 0\n" ); } static bool load_listing_file(const std::string &f, basisu::vector &filenames) { std::string filename(f); filename.erase(0, 1); FILE *pFile = nullptr; #ifdef _WIN32 fopen_s(&pFile, filename.c_str(), "r"); #else pFile = fopen(filename.c_str(), "r"); #endif if (!pFile) { error_printf("Failed opening listing file: \"%s\"\n", filename.c_str()); return false; } uint32_t total_filenames = 0; for ( ; ; ) { char buf[3072]; buf[0] = '\0'; char *p = fgets(buf, sizeof(buf), pFile); if (!p) { if (ferror(pFile)) { error_printf("Failed reading from listing file: \"%s\"\n", filename.c_str()); fclose(pFile); return false; } else break; } std::string read_filename(p); while (read_filename.size()) { if (read_filename[0] == ' ') read_filename.erase(0, 1); else break; } while (read_filename.size()) { const char c = read_filename.back(); if ((c == ' ') || (c == '\n') || (c == '\r')) read_filename.erase(read_filename.size() - 1, 1); else break; } if (read_filename.size()) { filenames.push_back(read_filename); total_filenames++; } } fclose(pFile); printf("Successfully read %u filenames(s) from listing file \"%s\"\n", total_filenames, filename.c_str()); return true; } class command_line_params { BASISU_NO_EQUALS_OR_COPY_CONSTRUCT(command_line_params); public: command_line_params() : m_mode(cDefault), m_ktx2_mode(false), m_ktx2_zstandard(true), m_ktx2_zstandard_level(6), m_ktx2_animdata_duration(1), m_ktx2_animdata_timescale(15), m_ktx2_animdata_loopcount(0), m_multifile_first(0), m_multifile_num(0), m_max_threads(1024), // surely this is high enough m_individual(true), m_no_ktx(false), m_ktx_only(false), m_write_out(false), m_format_only(-1), m_etc1_only(false), m_fuzz_testing(false), m_compare_ssim(false), m_compare_plot(false), m_bench(false), m_parallel_compression(false) { m_comp_params.m_compression_level = basisu::maximum(0, BASISU_DEFAULT_COMPRESSION_LEVEL - 1); m_test_file_dir = "../test_files"; } bool parse(int arg_c, const char **arg_v) { int arg_index = 1; while (arg_index < arg_c) { const char *pArg = arg_v[arg_index]; const int num_remaining_args = arg_c - (arg_index + 1); int arg_count = 1; #define REMAINING_ARGS_CHECK(n) if (num_remaining_args < (n)) { error_printf("Error: Expected %u values to follow %s!\n", n, pArg); return false; } if (strcasecmp(pArg, "-ktx2") == 0) { m_ktx2_mode = true; } else if (strcasecmp(pArg, "-ktx2_no_zstandard") == 0) { m_ktx2_zstandard = false; } else if (strcasecmp(pArg, "-ktx2_zstandard_level") == 0) { REMAINING_ARGS_CHECK(1); m_ktx2_zstandard_level = atoi(arg_v[arg_index + 1]); arg_count++; } else if (strcasecmp(pArg, "-ktx2_animdata_duration") == 0) { REMAINING_ARGS_CHECK(1); m_ktx2_animdata_duration = atoi(arg_v[arg_index + 1]); arg_count++; } else if (strcasecmp(pArg, "-ktx2_animdata_timescale") == 0) { REMAINING_ARGS_CHECK(1); m_ktx2_animdata_timescale = atoi(arg_v[arg_index + 1]); arg_count++; } else if (strcasecmp(pArg, "-ktx2_animdata_loopcount") == 0) { REMAINING_ARGS_CHECK(1); m_ktx2_animdata_loopcount = atoi(arg_v[arg_index + 1]); arg_count++; } else if (strcasecmp(pArg, "-compress") == 0) m_mode = cCompress; else if (strcasecmp(pArg, "-compare") == 0) m_mode = cCompare; else if (strcasecmp(pArg, "-split") == 0) m_mode = cSplitImage; else if (strcasecmp(pArg, "-combine") == 0) m_mode = cCombineImages; else if (strcasecmp(pArg, "-unpack") == 0) m_mode = cUnpack; else if (strcasecmp(pArg, "-validate") == 0) m_mode = cValidate; else if (strcasecmp(pArg, "-info") == 0) m_mode = cInfo; else if (strcasecmp(pArg, "-version") == 0) m_mode = cVersion; else if (strcasecmp(pArg, "-compare_ssim") == 0) m_compare_ssim = true; else if (strcasecmp(pArg, "-compare_plot") == 0) m_compare_plot = true; else if (strcasecmp(pArg, "-bench") == 0) m_mode = cBench; else if (strcasecmp(pArg, "-comp_size") == 0) m_mode = cCompSize; else if (strcasecmp(pArg, "-test") == 0) m_mode = cTest; else if (strcasecmp(pArg, "-clbench") == 0) m_mode = cCLBench; else if (strcasecmp(pArg, "-test_dir") == 0) { REMAINING_ARGS_CHECK(1); m_test_file_dir = std::string(arg_v[arg_index + 1]); arg_count++; } else if (strcasecmp(pArg, "-no_sse") == 0) { #if BASISU_SUPPORT_SSE g_cpu_supports_sse41 = false; #endif } else if (strcasecmp(pArg, "-no_status_output") == 0) { m_comp_params.m_status_output = false; } else if (strcasecmp(pArg, "-file") == 0) { REMAINING_ARGS_CHECK(1); m_input_filenames.push_back(std::string(arg_v[arg_index + 1])); arg_count++; } else if (strcasecmp(pArg, "-alpha_file") == 0) { REMAINING_ARGS_CHECK(1); m_input_alpha_filenames.push_back(std::string(arg_v[arg_index + 1])); arg_count++; } else if (strcasecmp(pArg, "-multifile_printf") == 0) { REMAINING_ARGS_CHECK(1); m_multifile_printf = std::string(arg_v[arg_index + 1]); arg_count++; } else if (strcasecmp(pArg, "-multifile_first") == 0) { REMAINING_ARGS_CHECK(1); m_multifile_first = atoi(arg_v[arg_index + 1]); arg_count++; } else if (strcasecmp(pArg, "-multifile_num") == 0) { REMAINING_ARGS_CHECK(1); m_multifile_num = atoi(arg_v[arg_index + 1]); arg_count++; } else if (strcasecmp(pArg, "-uastc") == 0) m_comp_params.m_uastc = true; else if (strcasecmp(pArg, "-uastc_level") == 0) { REMAINING_ARGS_CHECK(1); int uastc_level = atoi(arg_v[arg_index + 1]); uastc_level = clamp(uastc_level, 0, TOTAL_PACK_UASTC_LEVELS - 1); static_assert(TOTAL_PACK_UASTC_LEVELS == 5, "TOTAL_PACK_UASTC_LEVELS==5"); static const uint32_t s_level_flags[TOTAL_PACK_UASTC_LEVELS] = { cPackUASTCLevelFastest, cPackUASTCLevelFaster, cPackUASTCLevelDefault, cPackUASTCLevelSlower, cPackUASTCLevelVerySlow }; m_comp_params.m_pack_uastc_flags &= ~cPackUASTCLevelMask; m_comp_params.m_pack_uastc_flags |= s_level_flags[uastc_level]; arg_count++; } else if (strcasecmp(pArg, "-resample") == 0) { REMAINING_ARGS_CHECK(2); m_comp_params.m_resample_width = atoi(arg_v[arg_index + 1]); m_comp_params.m_resample_height = atoi(arg_v[arg_index + 2]); arg_count += 2; } else if (strcasecmp(pArg, "-resample_factor") == 0) { REMAINING_ARGS_CHECK(1); m_comp_params.m_resample_factor = (float)atof(arg_v[arg_index + 1]); arg_count++; } else if (strcasecmp(pArg, "-uastc_rdo_l") == 0) { REMAINING_ARGS_CHECK(1); m_comp_params.m_rdo_uastc_quality_scalar = (float)atof(arg_v[arg_index + 1]); m_comp_params.m_rdo_uastc = true; arg_count++; } else if (strcasecmp(pArg, "-uastc_rdo_d") == 0) { REMAINING_ARGS_CHECK(1); m_comp_params.m_rdo_uastc_dict_size = atoi(arg_v[arg_index + 1]); arg_count++; } else if (strcasecmp(pArg, "-uastc_rdo_b") == 0) { REMAINING_ARGS_CHECK(1); m_comp_params.m_rdo_uastc_max_smooth_block_error_scale = (float)atof(arg_v[arg_index + 1]); arg_count++; } else if (strcasecmp(pArg, "-uastc_rdo_s") == 0) { REMAINING_ARGS_CHECK(1); m_comp_params.m_rdo_uastc_smooth_block_max_std_dev = (float)atof(arg_v[arg_index + 1]); arg_count++; } else if (strcasecmp(pArg, "-uastc_rdo_f") == 0) m_comp_params.m_rdo_uastc_favor_simpler_modes_in_rdo_mode = false; else if (strcasecmp(pArg, "-uastc_rdo_m") == 0) m_comp_params.m_rdo_uastc_multithreading = false; else if (strcasecmp(pArg, "-linear") == 0) m_comp_params.m_perceptual = false; else if (strcasecmp(pArg, "-srgb") == 0) m_comp_params.m_perceptual = true; else if (strcasecmp(pArg, "-q") == 0) { REMAINING_ARGS_CHECK(1); m_comp_params.m_quality_level = clamp(atoi(arg_v[arg_index + 1]), BASISU_QUALITY_MIN, BASISU_QUALITY_MAX); arg_count++; } else if (strcasecmp(pArg, "-output_file") == 0) { REMAINING_ARGS_CHECK(1); m_output_filename = arg_v[arg_index + 1]; arg_count++; } else if (strcasecmp(pArg, "-output_path") == 0) { REMAINING_ARGS_CHECK(1); m_output_path = arg_v[arg_index + 1]; arg_count++; } else if ((strcasecmp(pArg, "-debug") == 0) || (strcasecmp(pArg, "-verbose") == 0)) { m_comp_params.m_debug = true; enable_debug_printf(true); } else if (strcasecmp(pArg, "-validate_etc1s") == 0) { m_comp_params.m_validate_etc1s = true; } else if (strcasecmp(pArg, "-validate_output") == 0) { m_comp_params.m_validate_output_data = true; } else if (strcasecmp(pArg, "-debug_images") == 0) m_comp_params.m_debug_images = true; else if (strcasecmp(pArg, "-stats") == 0) m_comp_params.m_compute_stats = true; else if (strcasecmp(pArg, "-gen_global_codebooks") == 0) { // TODO } else if (strcasecmp(pArg, "-use_global_codebooks") == 0) { REMAINING_ARGS_CHECK(1); m_etc1s_use_global_codebooks_file = arg_v[arg_index + 1]; arg_count++; } else if (strcasecmp(pArg, "-comp_level") == 0) { REMAINING_ARGS_CHECK(1); m_comp_params.m_compression_level = atoi(arg_v[arg_index + 1]); arg_count++; } else if (strcasecmp(pArg, "-slower") == 0) { // This option is gone, but we'll do something reasonable with it anyway. Level 4 is equivalent to the original release's -slower, but let's just go to level 2. m_comp_params.m_compression_level = BASISU_DEFAULT_COMPRESSION_LEVEL + 1; } else if (strcasecmp(pArg, "-max_endpoints") == 0) { REMAINING_ARGS_CHECK(1); m_comp_params.m_max_endpoint_clusters = clamp(atoi(arg_v[arg_index + 1]), 1, BASISU_MAX_ENDPOINT_CLUSTERS); arg_count++; } else if (strcasecmp(pArg, "-max_selectors") == 0) { REMAINING_ARGS_CHECK(1); m_comp_params.m_max_selector_clusters = clamp(atoi(arg_v[arg_index + 1]), 1, BASISU_MAX_SELECTOR_CLUSTERS); arg_count++; } else if (strcasecmp(pArg, "-y_flip") == 0) m_comp_params.m_y_flip = true; else if (strcasecmp(pArg, "-normal_map") == 0) { m_comp_params.m_perceptual = false; m_comp_params.m_mip_srgb = false; m_comp_params.m_no_selector_rdo = true; m_comp_params.m_no_endpoint_rdo = true; } else if (strcasecmp(pArg, "-no_alpha") == 0) m_comp_params.m_check_for_alpha = false; else if (strcasecmp(pArg, "-force_alpha") == 0) m_comp_params.m_force_alpha = true; else if ((strcasecmp(pArg, "-separate_rg_to_color_alpha") == 0) || (strcasecmp(pArg, "-seperate_rg_to_color_alpha") == 0)) // was mispelled for a while - whoops! { m_comp_params.m_swizzle[0] = 0; m_comp_params.m_swizzle[1] = 0; m_comp_params.m_swizzle[2] = 0; m_comp_params.m_swizzle[3] = 1; } else if (strcasecmp(pArg, "-swizzle") == 0) { REMAINING_ARGS_CHECK(1); const char *swizzle = arg_v[arg_index + 1]; if (strlen(swizzle) != 4) { error_printf("Swizzle requires exactly 4 characters\n"); return false; } for (int i=0; i<4; ++i) { if (swizzle[i] == 'r') m_comp_params.m_swizzle[i] = 0; else if (swizzle[i] == 'g') m_comp_params.m_swizzle[i] = 1; else if (swizzle[i] == 'b') m_comp_params.m_swizzle[i] = 2; else if (swizzle[i] == 'a') m_comp_params.m_swizzle[i] = 3; else { error_printf("Swizzle must be one of [rgba]"); return false; } } arg_count++; } else if (strcasecmp(pArg, "-renorm") == 0) m_comp_params.m_renormalize = true; else if (strcasecmp(pArg, "-no_multithreading") == 0) { m_comp_params.m_multithreading = false; } else if (strcasecmp(pArg, "-parallel") == 0) { m_parallel_compression = true; } else if (strcasecmp(pArg, "-max_threads") == 0) { REMAINING_ARGS_CHECK(1); m_max_threads = atoi(arg_v[arg_index + 1]); arg_count++; } else if (strcasecmp(pArg, "-mipmap") == 0) m_comp_params.m_mip_gen = true; else if (strcasecmp(pArg, "-no_ktx") == 0) m_no_ktx = true; else if (strcasecmp(pArg, "-ktx_only") == 0) m_ktx_only = true; else if (strcasecmp(pArg, "-write_out") == 0) m_write_out = true; else if (strcasecmp(pArg, "-format_only") == 0) { REMAINING_ARGS_CHECK(1); m_format_only = atoi(arg_v[arg_index + 1]); arg_count++; } else if (strcasecmp(pArg, "-etc1_only") == 0) { m_etc1_only = true; m_format_only = (int)basist::transcoder_texture_format::cTFETC1_RGB; } else if (strcasecmp(pArg, "-disable_hierarchical_endpoint_codebooks") == 0) m_comp_params.m_disable_hierarchical_endpoint_codebooks = true; else if (strcasecmp(pArg, "-opencl") == 0) { m_comp_params.m_use_opencl = true; } else if (strcasecmp(pArg, "-opencl_serialize") == 0) { } else if (strcasecmp(pArg, "-mip_scale") == 0) { REMAINING_ARGS_CHECK(1); m_comp_params.m_mip_scale = (float)atof(arg_v[arg_index + 1]); arg_count++; } else if (strcasecmp(pArg, "-mip_filter") == 0) { REMAINING_ARGS_CHECK(1); m_comp_params.m_mip_filter = arg_v[arg_index + 1]; // TODO: Check filter arg_count++; } else if (strcasecmp(pArg, "-mip_renorm") == 0) m_comp_params.m_mip_renormalize = true; else if (strcasecmp(pArg, "-mip_clamp") == 0) m_comp_params.m_mip_wrapping = false; else if (strcasecmp(pArg, "-mip_fast") == 0) m_comp_params.m_mip_fast = true; else if (strcasecmp(pArg, "-mip_slow") == 0) m_comp_params.m_mip_fast = false; else if (strcasecmp(pArg, "-mip_smallest") == 0) { REMAINING_ARGS_CHECK(1); m_comp_params.m_mip_smallest_dimension = atoi(arg_v[arg_index + 1]); arg_count++; } else if (strcasecmp(pArg, "-mip_srgb") == 0) m_comp_params.m_mip_srgb = true; else if (strcasecmp(pArg, "-mip_linear") == 0) m_comp_params.m_mip_srgb = false; else if (strcasecmp(pArg, "-no_selector_rdo") == 0) m_comp_params.m_no_selector_rdo = true; else if (strcasecmp(pArg, "-selector_rdo_thresh") == 0) { REMAINING_ARGS_CHECK(1); m_comp_params.m_selector_rdo_thresh = (float)atof(arg_v[arg_index + 1]); arg_count++; } else if (strcasecmp(pArg, "-no_endpoint_rdo") == 0) m_comp_params.m_no_endpoint_rdo = true; else if (strcasecmp(pArg, "-endpoint_rdo_thresh") == 0) { REMAINING_ARGS_CHECK(1); m_comp_params.m_endpoint_rdo_thresh = (float)atof(arg_v[arg_index + 1]); arg_count++; } else if (strcasecmp(pArg, "-userdata0") == 0) { REMAINING_ARGS_CHECK(1); m_comp_params.m_userdata0 = atoi(arg_v[arg_index + 1]); arg_count++; } else if (strcasecmp(pArg, "-userdata1") == 0) { REMAINING_ARGS_CHECK(1); m_comp_params.m_userdata1 = atoi(arg_v[arg_index + 1]); arg_count++; } else if (strcasecmp(pArg, "-framerate") == 0) { REMAINING_ARGS_CHECK(1); double fps = atof(arg_v[arg_index + 1]); double us_per_frame = 0; if (fps > 0) us_per_frame = 1000000.0f / fps; m_comp_params.m_us_per_frame = clamp(static_cast(us_per_frame + .5f), 0, basist::cBASISMaxUSPerFrame); arg_count++; } else if (strcasecmp(pArg, "-tex_type") == 0) { REMAINING_ARGS_CHECK(1); const char* pType = arg_v[arg_index + 1]; if (strcasecmp(pType, "2d") == 0) m_comp_params.m_tex_type = basist::cBASISTexType2D; else if (strcasecmp(pType, "2darray") == 0) { m_comp_params.m_tex_type = basist::cBASISTexType2DArray; m_individual = false; } else if (strcasecmp(pType, "3d") == 0) { m_comp_params.m_tex_type = basist::cBASISTexTypeVolume; m_individual = false; } else if (strcasecmp(pType, "cubemap") == 0) { m_comp_params.m_tex_type = basist::cBASISTexTypeCubemapArray; m_individual = false; } else if (strcasecmp(pType, "video") == 0) { m_comp_params.m_tex_type = basist::cBASISTexTypeVideoFrames; m_individual = false; } else { error_printf("Invalid texture type: %s\n", pType); return false; } arg_count++; } else if (strcasecmp(pArg, "-individual") == 0) m_individual = true; else if (strcasecmp(pArg, "-tex_array") == 0) m_individual = false; else if (strcasecmp(pArg, "-fuzz_testing") == 0) m_fuzz_testing = true; else if (strcasecmp(pArg, "-csv_file") == 0) { REMAINING_ARGS_CHECK(1); m_csv_file = arg_v[arg_index + 1]; m_comp_params.m_compute_stats = true; arg_count++; } else if (pArg[0] == '-') { error_printf("Unrecognized command line option: %s\n", pArg); return false; } else { // Let's assume it's a source filename, so globbing works //error_printf("Unrecognized command line option: %s\n", pArg); m_input_filenames.push_back(pArg); } arg_index += arg_count; } if (m_comp_params.m_quality_level != -1) { m_comp_params.m_max_endpoint_clusters = 0; m_comp_params.m_max_selector_clusters = 0; } else if ((!m_comp_params.m_max_endpoint_clusters) || (!m_comp_params.m_max_selector_clusters)) { m_comp_params.m_max_endpoint_clusters = 0; m_comp_params.m_max_selector_clusters = 0; m_comp_params.m_quality_level = 128; } if (!m_comp_params.m_mip_srgb.was_changed()) { // They didn't specify what colorspace to do mipmap filtering in, so choose sRGB if they've specified that the texture is sRGB. if (m_comp_params.m_perceptual) m_comp_params.m_mip_srgb = true; else m_comp_params.m_mip_srgb = false; } return true; } bool process_listing_files() { basisu::vector new_input_filenames; for (uint32_t i = 0; i < m_input_filenames.size(); i++) { if (m_input_filenames[i][0] == '@') { if (!load_listing_file(m_input_filenames[i], new_input_filenames)) return false; } else new_input_filenames.push_back(m_input_filenames[i]); } new_input_filenames.swap(m_input_filenames); basisu::vector new_input_alpha_filenames; for (uint32_t i = 0; i < m_input_alpha_filenames.size(); i++) { if (m_input_alpha_filenames[i][0] == '@') { if (!load_listing_file(m_input_alpha_filenames[i], new_input_alpha_filenames)) return false; } else new_input_alpha_filenames.push_back(m_input_alpha_filenames[i]); } new_input_alpha_filenames.swap(m_input_alpha_filenames); return true; } basis_compressor_params m_comp_params; tool_mode m_mode; bool m_ktx2_mode; bool m_ktx2_zstandard; int m_ktx2_zstandard_level; uint32_t m_ktx2_animdata_duration; uint32_t m_ktx2_animdata_timescale; uint32_t m_ktx2_animdata_loopcount; basisu::vector m_input_filenames; basisu::vector m_input_alpha_filenames; std::string m_output_filename; std::string m_output_path; int m_format_only; std::string m_multifile_printf; uint32_t m_multifile_first; uint32_t m_multifile_num; std::string m_csv_file; std::string m_etc1s_use_global_codebooks_file; std::string m_test_file_dir; uint32_t m_max_threads; bool m_individual; bool m_no_ktx; bool m_ktx_only; bool m_write_out; bool m_etc1_only; bool m_fuzz_testing; bool m_compare_ssim; bool m_compare_plot; bool m_bench; bool m_parallel_compression; }; static bool expand_multifile(command_line_params &opts) { if (!opts.m_multifile_printf.size()) return true; if (!opts.m_multifile_num) { error_printf("-multifile_printf specified, but not -multifile_num\n"); return false; } std::string fmt(opts.m_multifile_printf); // Workaround for MSVC debugger issues. Questionable to leave in here. size_t x = fmt.find_first_of('!'); if (x != std::string::npos) fmt[x] = '%'; if (string_find_right(fmt, '%') == -1) { error_printf("Must include C-style printf() format character '%%' in -multifile_printf string\n"); return false; } for (uint32_t i = opts.m_multifile_first; i < opts.m_multifile_first + opts.m_multifile_num; i++) { char buf[1024]; #ifdef _WIN32 sprintf_s(buf, sizeof(buf), fmt.c_str(), i); #else snprintf(buf, sizeof(buf), fmt.c_str(), i); #endif if (buf[0]) opts.m_input_filenames.push_back(buf); } return true; } struct basis_data { basis_data() : m_transcoder() { } uint8_vec m_file_data; basist::basisu_transcoder m_transcoder; }; static basis_data *load_basis_file(const char *pInput_filename, bool force_etc1s) { basis_data* p = new basis_data; uint8_vec &basis_data = p->m_file_data; if (!basisu::read_file_to_vec(pInput_filename, basis_data)) { error_printf("Failed reading file \"%s\"\n", pInput_filename); delete p; return nullptr; } printf("Input file \"%s\"\n", pInput_filename); if (!basis_data.size()) { error_printf("File is empty!\n"); delete p; return nullptr; } if (basis_data.size() > UINT32_MAX) { error_printf("File is too large!\n"); delete p; return nullptr; } if (force_etc1s) { if (p->m_transcoder.get_tex_format((const void*)&p->m_file_data[0], (uint32_t)p->m_file_data.size()) != basist::basis_tex_format::cETC1S) { error_printf("Global codebook file must be in ETC1S format!\n"); delete p; return nullptr; } } if (!p->m_transcoder.start_transcoding(&basis_data[0], (uint32_t)basis_data.size())) { error_printf("start_transcoding() failed!\n"); delete p; return nullptr; } return p; } static bool compress_mode(command_line_params &opts) { uint32_t num_threads = 1; if (opts.m_comp_params.m_multithreading) { // We use std::thread::hardware_concurrency() as a hint to determine the default # of threads to put into a pool. num_threads = std::thread::hardware_concurrency(); if (num_threads < 1) num_threads = 1; if (num_threads > opts.m_max_threads) num_threads = opts.m_max_threads; } job_pool compressor_jpool(opts.m_parallel_compression ? 1 : num_threads); if (!opts.m_parallel_compression) opts.m_comp_params.m_pJob_pool = &compressor_jpool; if (!expand_multifile(opts)) { error_printf("-multifile expansion failed!\n"); return false; } if (!opts.m_input_filenames.size()) { error_printf("No input files to process!\n"); return false; } basis_data* pGlobal_codebook_data = nullptr; if (opts.m_etc1s_use_global_codebooks_file.size()) { pGlobal_codebook_data = load_basis_file(opts.m_etc1s_use_global_codebooks_file.c_str(), true); if (!pGlobal_codebook_data) return false; printf("Loaded global codebooks from .basis file \"%s\"\n", opts.m_etc1s_use_global_codebooks_file.c_str()); #if 0 // Development/test code. TODO: Remove. basis_data* pGlobal_codebook_data2 = load_basis_file("xmen_1024.basis", sel_codebook, true); const basist::basisu_lowlevel_etc1s_transcoder &ta = pGlobal_codebook_data->m_transcoder.get_lowlevel_etc1s_decoder(); const basist::basisu_lowlevel_etc1s_transcoder &tb = pGlobal_codebook_data2->m_transcoder.get_lowlevel_etc1s_decoder(); if (ta.get_endpoints().size() != tb.get_endpoints().size()) { printf("Endpoint CB's don't match\n"); } else if (ta.get_selectors().size() != tb.get_selectors().size()) { printf("Selector CB's don't match\n"); } else { for (uint32_t i = 0; i < ta.get_endpoints().size(); i++) { if (ta.get_endpoints()[i] != tb.get_endpoints()[i]) { printf("Endoint CB mismatch entry %u\n", i); } } for (uint32_t i = 0; i < ta.get_selectors().size(); i++) { if (ta.get_selectors()[i] != tb.get_selectors()[i]) { printf("Selector CB mismatch entry %u\n", i); } } } delete pGlobal_codebook_data2; pGlobal_codebook_data2 = nullptr; #endif } basis_compressor_params ¶ms = opts.m_comp_params; if (opts.m_ktx2_mode) { params.m_create_ktx2_file = true; if (opts.m_ktx2_zstandard) params.m_ktx2_uastc_supercompression = basist::KTX2_SS_ZSTANDARD; else params.m_ktx2_uastc_supercompression = basist::KTX2_SS_NONE; params.m_ktx2_srgb_transfer_func = opts.m_comp_params.m_perceptual; if (params.m_tex_type == basist::basis_texture_type::cBASISTexTypeVideoFrames) { // Create KTXanimData key value entry // TODO: Move this to basisu_comp.h basist::ktx2_transcoder::key_value kv; const char* pAD = "KTXanimData"; kv.m_key.resize(strlen(pAD) + 1); strcpy((char*)kv.m_key.data(), pAD); basist::ktx2_animdata ad; ad.m_duration = opts.m_ktx2_animdata_duration; ad.m_timescale = opts.m_ktx2_animdata_timescale; ad.m_loopcount = opts.m_ktx2_animdata_loopcount; kv.m_value.resize(sizeof(ad)); memcpy(kv.m_value.data(), &ad, sizeof(ad)); params.m_ktx2_key_values.push_back(kv); } // TODO- expose this to command line. params.m_ktx2_zstd_supercompression_level = opts.m_ktx2_zstandard_level; } params.m_read_source_images = true; params.m_write_output_basis_files = true; params.m_pGlobal_codebooks = pGlobal_codebook_data ? &pGlobal_codebook_data->m_transcoder.get_lowlevel_etc1s_decoder() : nullptr; FILE *pCSV_file = nullptr; if (opts.m_csv_file.size()) { //pCSV_file = fopen_safe(opts.m_csv_file.c_str(), "a"); pCSV_file = fopen_safe(opts.m_csv_file.c_str(), "w"); if (!pCSV_file) { error_printf("Failed opening CVS file \"%s\"\n", opts.m_csv_file.c_str()); delete pGlobal_codebook_data; pGlobal_codebook_data = nullptr; return false; } fprintf(pCSV_file, "Filename, Size, Slices, Width, Height, HasAlpha, BitsPerTexel, Slice0RGBAvgPSNR, Slice0RGBAAvgPSNR, Slice0Luma709PSNR, Slice0BestETC1SLuma709PSNR, Q, CL, Time, RGBAvgPSNRMin, RGBAvgPSNRAvg, AAvgPSNRMin, AAvgPSNRAvg, Luma709PSNRMin, Luma709PSNRAvg\n"); } printf("Processing %u total file(s)\n", (uint32_t)opts.m_input_filenames.size()); interval_timer all_tm; all_tm.start(); basisu::vector comp_params_vec; const size_t total_files = (opts.m_individual ? opts.m_input_filenames.size() : 1U); bool result = true; if ((opts.m_individual) && (opts.m_output_filename.size())) { if (total_files > 1) { error_printf("-output_file specified in individual mode, but multiple input files have been specified which would cause the output file to be written multiple times.\n"); delete pGlobal_codebook_data; pGlobal_codebook_data = nullptr; return false; } } for (size_t file_index = 0; file_index < total_files; file_index++) { if (opts.m_individual) { params.m_source_filenames.resize(1); params.m_source_filenames[0] = opts.m_input_filenames[file_index]; if (file_index < opts.m_input_alpha_filenames.size()) { params.m_source_alpha_filenames.resize(1); params.m_source_alpha_filenames[0] = opts.m_input_alpha_filenames[file_index]; if (params.m_status_output) printf("Processing source file \"%s\", alpha file \"%s\"\n", params.m_source_filenames[0].c_str(), params.m_source_alpha_filenames[0].c_str()); } else { params.m_source_alpha_filenames.resize(0); if (params.m_status_output) printf("Processing source file \"%s\"\n", params.m_source_filenames[0].c_str()); } } else { params.m_source_filenames = opts.m_input_filenames; params.m_source_alpha_filenames = opts.m_input_alpha_filenames; } if (opts.m_output_filename.size()) params.m_out_filename = opts.m_output_filename; else { std::string filename; string_get_filename(opts.m_input_filenames[file_index].c_str(), filename); string_remove_extension(filename); if (opts.m_ktx2_mode) filename += ".ktx2"; else filename += ".basis"; if (opts.m_output_path.size()) string_combine_path(filename, opts.m_output_path.c_str(), filename.c_str()); params.m_out_filename = filename; } if (opts.m_parallel_compression) { comp_params_vec.push_back(params); } else { basis_compressor c; if (!c.init(opts.m_comp_params)) { error_printf("basis_compressor::init() failed!\n"); if (pCSV_file) { fclose(pCSV_file); pCSV_file = nullptr; } delete pGlobal_codebook_data; pGlobal_codebook_data = nullptr; return false; } interval_timer tm; tm.start(); basis_compressor::error_code ec = c.process(); tm.stop(); if (ec == basis_compressor::cECSuccess) { if (params.m_status_output) { printf("Compression succeeded to file \"%s\" size %u bytes in %3.3f secs\n", params.m_out_filename.c_str(), opts.m_ktx2_mode ? c.get_output_ktx2_file().size() : c.get_output_basis_file().size(), tm.get_elapsed_secs()); } } else { result = false; if (!params.m_status_output) { error_printf("Compression failed on file \"%s\"\n", params.m_out_filename.c_str()); } bool exit_flag = true; switch (ec) { case basis_compressor::cECFailedReadingSourceImages: { error_printf("Compressor failed reading a source image!\n"); if (opts.m_individual) exit_flag = false; break; } case basis_compressor::cECFailedValidating: error_printf("Compressor failed 2darray/cubemap/video validation checks!\n"); break; case basis_compressor::cECFailedEncodeUASTC: error_printf("Compressor UASTC encode failed!\n"); break; case basis_compressor::cECFailedFrontEnd: error_printf("Compressor frontend stage failed!\n"); break; case basis_compressor::cECFailedFontendExtract: error_printf("Compressor frontend data extraction failed!\n"); break; case basis_compressor::cECFailedBackend: error_printf("Compressor backend stage failed!\n"); break; case basis_compressor::cECFailedCreateBasisFile: error_printf("Compressor failed creating Basis file data!\n"); break; case basis_compressor::cECFailedWritingOutput: error_printf("Compressor failed writing to output Basis file!\n"); break; case basis_compressor::cECFailedUASTCRDOPostProcess: error_printf("Compressor failed during the UASTC post process step!\n"); break; case basis_compressor::cECFailedCreateKTX2File: error_printf("Compressor failed creating KTX2 file data!\n"); break; default: error_printf("basis_compress::process() failed!\n"); break; } if (exit_flag) { if (pCSV_file) { fclose(pCSV_file); pCSV_file = nullptr; } delete pGlobal_codebook_data; pGlobal_codebook_data = nullptr; return false; } } if ((pCSV_file) && (c.get_stats().size())) { if (c.get_stats().size()) { float rgb_avg_psnr_min = 1e+9f, rgb_avg_psnr_avg = 0.0f; float a_avg_psnr_min = 1e+9f, a_avg_psnr_avg = 0.0f; float luma_709_psnr_min = 1e+9f, luma_709_psnr_avg = 0.0f; for (size_t slice_index = 0; slice_index < c.get_stats().size(); slice_index++) { rgb_avg_psnr_min = basisu::minimum(rgb_avg_psnr_min, c.get_stats()[slice_index].m_basis_rgb_avg_psnr); rgb_avg_psnr_avg += c.get_stats()[slice_index].m_basis_rgb_avg_psnr; a_avg_psnr_min = basisu::minimum(a_avg_psnr_min, c.get_stats()[slice_index].m_basis_a_avg_psnr); a_avg_psnr_avg += c.get_stats()[slice_index].m_basis_a_avg_psnr; luma_709_psnr_min = basisu::minimum(luma_709_psnr_min, c.get_stats()[slice_index].m_basis_luma_709_psnr); luma_709_psnr_avg += c.get_stats()[slice_index].m_basis_luma_709_psnr; } rgb_avg_psnr_avg /= c.get_stats().size(); a_avg_psnr_avg /= c.get_stats().size(); luma_709_psnr_avg /= c.get_stats().size(); fprintf(pCSV_file, "\"%s\", %u, %u, %u, %u, %u, %f, %f, %f, %f, %f, %u, %u, %f, %f, %f, %f, %f, %f, %f\n", params.m_out_filename.c_str(), c.get_basis_file_size(), (uint32_t)c.get_stats().size(), c.get_stats()[0].m_width, c.get_stats()[0].m_height, (uint32_t)c.get_any_source_image_has_alpha(), c.get_basis_bits_per_texel(), c.get_stats()[0].m_basis_rgb_avg_psnr, c.get_stats()[0].m_basis_rgba_avg_psnr, c.get_stats()[0].m_basis_luma_709_psnr, c.get_stats()[0].m_best_etc1s_luma_709_psnr, params.m_quality_level, (int)params.m_compression_level, tm.get_elapsed_secs(), rgb_avg_psnr_min, rgb_avg_psnr_avg, a_avg_psnr_min, a_avg_psnr_avg, luma_709_psnr_min, luma_709_psnr_avg); fflush(pCSV_file); } } //if ((opts.m_individual) && (params.m_status_output)) // printf("\n"); } // if (opts.m_parallel_compression) } // file_index if (opts.m_parallel_compression) { basisu::vector results; bool any_failed = basis_parallel_compress( num_threads, comp_params_vec, results); BASISU_NOTE_UNUSED(any_failed); uint32_t total_successes = 0, total_failures = 0; for (uint32_t i = 0; i < comp_params_vec.size(); i++) { if (results[i].m_error_code != basis_compressor::cECSuccess) { result = false; total_failures++; error_printf("File %u (first source image: \"%s\", output file: \"%s\") failed with error code %i!\n", i, comp_params_vec[i].m_source_filenames[0].c_str(), comp_params_vec[i].m_out_filename.c_str(), (int)results[i].m_error_code); } else { total_successes++; } } printf("Total successes: %u failures: %u\n", total_successes, total_failures); } // if (opts.m_parallel_compression) all_tm.stop(); if (total_files > 1) printf("Total compression time: %3.3f secs\n", all_tm.get_elapsed_secs()); if (pCSV_file) { fclose(pCSV_file); pCSV_file = nullptr; } delete pGlobal_codebook_data; pGlobal_codebook_data = nullptr; return result; } static bool unpack_and_validate_ktx2_file( uint32_t file_index, const std::string& base_filename, uint8_vec& ktx2_file_data, command_line_params& opts, FILE* pCSV_file, basis_data* pGlobal_codebook_data, uint32_t& total_unpack_warnings, uint32_t& total_pvrtc_nonpow2_warnings) { // TODO (void)pCSV_file; (void)file_index; const bool validate_flag = (opts.m_mode == cValidate); basist::ktx2_transcoder dec; if (!dec.init(ktx2_file_data.data(), ktx2_file_data.size())) { error_printf("ktx2_transcoder::init() failed! File either uses an unsupported feature, is invalid, was corrupted, or this is a bug.\n"); return false; } if (!dec.start_transcoding()) { error_printf("ktx2_transcoder::start_transcoding() failed! File either uses an unsupported feature, is invalid, was corrupted, or this is a bug.\n"); return false; } printf("Resolution: %ux%u\n", dec.get_width(), dec.get_height()); printf("Mipmap Levels: %u\n", dec.get_levels()); printf("Texture Array Size (layers): %u\n", dec.get_layers()); printf("Total Faces: %u (%s)\n", dec.get_faces(), (dec.get_faces() == 6) ? "CUBEMAP" : "2D"); printf("Is Texture Video: %u\n", dec.is_video()); const bool is_etc1s = dec.get_format() == basist::basis_tex_format::cETC1S; printf("Supercompression Format: %s\n", is_etc1s ? "ETC1S" : "UASTC"); printf("Supercompression Scheme: "); switch (dec.get_header().m_supercompression_scheme) { case basist::KTX2_SS_NONE: printf("NONE\n"); break; case basist::KTX2_SS_BASISLZ: printf("BASISLZ\n"); break; case basist::KTX2_SS_ZSTANDARD: printf("ZSTANDARD\n"); break; default: error_printf("Invalid/unknown/unsupported\n"); return false; } printf("Has Alpha: %u\n", (uint32_t)dec.get_has_alpha()); printf("\nData Format Descriptor (DFD):\n"); printf("DFD length in bytes: %u\n", dec.get_dfd().size()); printf("DFD color model: %u\n", dec.get_dfd_color_model()); printf("DFD color primaries: %u (%s)\n", dec.get_dfd_color_primaries(), basist::ktx2_get_df_color_primaries_str(dec.get_dfd_color_primaries())); printf("DFD transfer func: %u (%s)\n", dec.get_dfd_transfer_func(), (dec.get_dfd_transfer_func() == basist::KTX2_KHR_DF_TRANSFER_LINEAR) ? "LINEAR" : ((dec.get_dfd_transfer_func() == basist::KTX2_KHR_DF_TRANSFER_SRGB) ? "SRGB" : "?")); printf("DFD flags: %u\n", dec.get_dfd_flags()); printf("DFD samples: %u\n", dec.get_dfd_total_samples()); if (is_etc1s) { printf("DFD chan0: %s\n", basist::ktx2_get_etc1s_df_channel_id_str(dec.get_dfd_channel_id0())); if (dec.get_dfd_total_samples() == 2) printf("DFD chan1: %s\n", basist::ktx2_get_etc1s_df_channel_id_str(dec.get_dfd_channel_id1())); } else printf("DFD chan0: %s\n", basist::ktx2_get_uastc_df_channel_id_str(dec.get_dfd_channel_id0())); printf("DFD hex values:\n"); for (uint32_t i = 0; i < dec.get_dfd().size(); i++) { if (i) printf(","); printf("0x%X", dec.get_dfd()[i]); } printf("\n\n"); printf("Total key values: %u\n", dec.get_key_values().size()); for (uint32_t i = 0; i < dec.get_key_values().size(); i++) { printf("%u. Key: \"%s\", Value length in bytes: %u", i, (const char*)dec.get_key_values()[i].m_key.data(), dec.get_key_values()[i].m_value.size()); if (dec.get_key_values()[i].m_value.size() > 256) continue; bool is_ascii = true; for (uint32_t j = 0; j < dec.get_key_values()[i].m_value.size(); j++) { uint8_t c = dec.get_key_values()[i].m_value[j]; if (!( ((c >= ' ') && (c < 0x80)) || ((j == dec.get_key_values()[i].m_value.size() - 1) && (!c)) )) { is_ascii = false; break; } } if (is_ascii) { uint8_vec s(dec.get_key_values()[i].m_value); s.push_back(0); printf(" Value String: \"%s\"", (const char *)s.data()); } else { printf(" Value Bytes: "); for (uint32_t j = 0; j < dec.get_key_values()[i].m_value.size(); j++) { if (j) printf(","); printf("0x%X", dec.get_key_values()[i].m_value[j]); } } printf("\n"); } if (is_etc1s) { printf("ETC1S header:\n"); printf("Endpoint Count: %u, Selector Count: %u, Endpoint Length: %u, Selector Length: %u, Tables Length: %u, Extended Length: %u\n", (uint32_t)dec.get_etc1s_header().m_endpoint_count, (uint32_t)dec.get_etc1s_header().m_selector_count, (uint32_t)dec.get_etc1s_header().m_endpoints_byte_length, (uint32_t)dec.get_etc1s_header().m_selectors_byte_length, (uint32_t)dec.get_etc1s_header().m_tables_byte_length, (uint32_t)dec.get_etc1s_header().m_extended_byte_length); printf("Total ETC1S image descs: %u\n", dec.get_etc1s_image_descs().size()); for (uint32_t i = 0; i < dec.get_etc1s_image_descs().size(); i++) { printf("%u. Flags: 0x%X, RGB Ofs: %u Len: %u, Alpha Ofs: %u, Len: %u\n", i, (uint32_t)dec.get_etc1s_image_descs()[i].m_image_flags, (uint32_t)dec.get_etc1s_image_descs()[i].m_rgb_slice_byte_offset, (uint32_t)dec.get_etc1s_image_descs()[i].m_rgb_slice_byte_length, (uint32_t)dec.get_etc1s_image_descs()[i].m_alpha_slice_byte_offset, (uint32_t)dec.get_etc1s_image_descs()[i].m_alpha_slice_byte_length); } } printf("Levels:\n"); for (uint32_t i = 0; i < dec.get_levels(); i++) { printf("%u. Offset: %llu, Length: %llu, Uncompressed Length: %llu\n", i, (long long unsigned int)dec.get_level_index()[i].m_byte_offset, (long long unsigned int)dec.get_level_index()[i].m_byte_length, (long long unsigned int)dec.get_level_index()[i].m_uncompressed_byte_length); } if (opts.m_mode == cInfo) { return true; } // gpu_images[format][face][layer][level] basisu::vector< gpu_image_vec > gpu_images[(int)basist::transcoder_texture_format::cTFTotalTextureFormats][6]; int first_format = 0; int last_format = (int)basist::transcoder_texture_format::cTFTotalTextureFormats; if (opts.m_format_only > -1) { first_format = opts.m_format_only; last_format = first_format + 1; } const uint32_t total_layers = maximum(1, dec.get_layers()); for (int format_iter = first_format; format_iter < last_format; format_iter++) { basist::transcoder_texture_format tex_fmt = static_cast(format_iter); if (basist::basis_transcoder_format_is_uncompressed(tex_fmt)) continue; if (!basis_is_format_supported(tex_fmt, dec.get_format())) continue; if (tex_fmt == basist::transcoder_texture_format::cTFBC7_ALT) continue; for (uint32_t face_index = 0; face_index < dec.get_faces(); face_index++) { gpu_images[(int)tex_fmt][face_index].resize(total_layers); for (uint32_t layer_index = 0; layer_index < total_layers; layer_index++) gpu_images[(int)tex_fmt][face_index][layer_index].resize(dec.get_levels()); } } // Now transcode the file to all supported texture formats and save mipmapped KTX files for (int format_iter = first_format; format_iter < last_format; format_iter++) { const basist::transcoder_texture_format transcoder_tex_fmt = static_cast(format_iter); if (basist::basis_transcoder_format_is_uncompressed(transcoder_tex_fmt)) continue; if (!basis_is_format_supported(transcoder_tex_fmt, dec.get_format())) continue; if (transcoder_tex_fmt == basist::transcoder_texture_format::cTFBC7_ALT) continue; for (uint32_t level_index = 0; level_index < dec.get_levels(); level_index++) { for (uint32_t layer_index = 0; layer_index < total_layers; layer_index++) { for (uint32_t face_index = 0; face_index < dec.get_faces(); face_index++) { basist::ktx2_image_level_info level_info; if (!dec.get_image_level_info(level_info, level_index, layer_index, face_index)) { error_printf("Failed retrieving image level information (%u %u %u)!\n", layer_index, level_index, face_index); return false; } if ((transcoder_tex_fmt == basist::transcoder_texture_format::cTFPVRTC1_4_RGB) || (transcoder_tex_fmt == basist::transcoder_texture_format::cTFPVRTC1_4_RGBA)) { if (!is_pow2(level_info.m_width) || !is_pow2(level_info.m_height)) { total_pvrtc_nonpow2_warnings++; printf("Warning: Will not transcode image %u level %u res %ux%u to PVRTC1 (one or more dimension is not a power of 2)\n", layer_index, level_index, level_info.m_width, level_info.m_height); // Can't transcode this image level to PVRTC because it's not a pow2 (we're going to support transcoding non-pow2 to the next larger pow2 soon) continue; } } basisu::texture_format tex_fmt = basis_get_basisu_texture_format(transcoder_tex_fmt); gpu_image& gi = gpu_images[(int)transcoder_tex_fmt][face_index][layer_index][level_index]; gi.init(tex_fmt, level_info.m_orig_width, level_info.m_orig_height); // Fill the buffer with psuedo-random bytes, to help more visibly detect cases where the transcoder fails to write to part of the output. fill_buffer_with_random_bytes(gi.get_ptr(), gi.get_size_in_bytes()); uint32_t decode_flags = 0; if (!dec.transcode_image_level(level_index, layer_index, face_index, gi.get_ptr(), gi.get_total_blocks(), transcoder_tex_fmt, decode_flags)) { error_printf("Failed transcoding image level (%u %u %u %u)!\n", layer_index, level_index, face_index, format_iter); return false; } printf("Transcode of layer %u level %u face %u res %ux%u format %s succeeded\n", layer_index, level_index, face_index, level_info.m_orig_width, level_info.m_orig_height, basist::basis_get_format_name(transcoder_tex_fmt)); } } // format_iter } // level_index } // image_info if (!validate_flag) { // Now write KTX files and unpack them to individual PNG's const bool is_cubemap_array = (dec.get_faces() > 1) && (total_layers > 1); for (int format_iter = first_format; format_iter < last_format; format_iter++) { const basist::transcoder_texture_format transcoder_tex_fmt = static_cast(format_iter); if (basist::basis_transcoder_format_is_uncompressed(transcoder_tex_fmt)) continue; if (!basis_is_format_supported(transcoder_tex_fmt, dec.get_format())) continue; if (transcoder_tex_fmt == basist::transcoder_texture_format::cTFBC7_ALT) continue; if ((!opts.m_no_ktx) && (is_cubemap_array)) { // No KTX tool that we know of supports cubemap arrays, so write individual cubemap files. for (uint32_t layer_index = 0; layer_index < total_layers; layer_index++) { basisu::vector cubemap; for (uint32_t face_index = 0; face_index < 6; face_index++) cubemap.push_back(gpu_images[format_iter][face_index][layer_index]); std::string ktx_filename(base_filename + string_format("_transcoded_cubemap_%s_%u.ktx", basist::basis_get_format_name(transcoder_tex_fmt), layer_index)); if (!write_compressed_texture_file(ktx_filename.c_str(), cubemap, true)) { error_printf("Failed writing KTX file \"%s\"!\n", ktx_filename.c_str()); return false; } printf("Wrote KTX file \"%s\"\n", ktx_filename.c_str()); } } for (uint32_t layer_index = 0; layer_index < total_layers; layer_index++) { for (uint32_t face_index = 0; face_index < dec.get_faces(); face_index++) { gpu_image_vec& gi = gpu_images[format_iter][face_index][layer_index]; if (!gi.size()) continue; uint32_t level; for (level = 0; level < gi.size(); level++) if (!gi[level].get_total_blocks()) break; if (level < gi.size()) continue; if ((!opts.m_no_ktx) && (!is_cubemap_array)) { std::string ktx_filename(base_filename + string_format("_transcoded_%s_%04u.ktx", basist::basis_get_format_name(transcoder_tex_fmt), layer_index)); if (!write_compressed_texture_file(ktx_filename.c_str(), gi)) { error_printf("Failed writing KTX file \"%s\"!\n", ktx_filename.c_str()); return false; } printf("Wrote KTX file \"%s\"\n", ktx_filename.c_str()); } for (uint32_t level_index = 0; level_index < gi.size(); level_index++) { basist::ktx2_image_level_info level_info; if (!dec.get_image_level_info(level_info, level_index, layer_index, face_index)) { error_printf("Failed retrieving image level information (%u %u %u)!\n", layer_index, level_index, face_index); return false; } image u; if (!gi[level_index].unpack(u)) { printf("Warning: Failed unpacking GPU texture data (%u %u %u %u). Unpacking as much as possible.\n", format_iter, layer_index, level_index, face_index); total_unpack_warnings++; } //u.crop(level_info.m_orig_width, level_info.m_orig_height); bool is_astc = (transcoder_tex_fmt == basist::transcoder_texture_format::cTFASTC_4x4_RGBA); bool write_png = true; #if !BASISU_USE_ASTC_DECOMPRESS if (is_astc) write_png = false; #endif if ((!opts.m_ktx_only) && (write_png)) { std::string rgb_filename; if (gi.size() > 1) rgb_filename = base_filename + string_format("_unpacked_rgb_%s_%u_%u_%04u.png", basist::basis_get_format_name(transcoder_tex_fmt), level_index, face_index, layer_index); else rgb_filename = base_filename + string_format("_unpacked_rgb_%s_%u_%04u.png", basist::basis_get_format_name(transcoder_tex_fmt), face_index, layer_index); if (!save_png(rgb_filename, u, cImageSaveIgnoreAlpha)) { error_printf("Failed writing to PNG file \"%s\"\n", rgb_filename.c_str()); delete pGlobal_codebook_data; pGlobal_codebook_data = nullptr; return false; } printf("Wrote PNG file \"%s\"\n", rgb_filename.c_str()); } if ((transcoder_tex_fmt == basist::transcoder_texture_format::cTFFXT1_RGB) && (opts.m_write_out)) { std::string out_filename; if (gi.size() > 1) out_filename = base_filename + string_format("_unpacked_rgb_%s_%u_%u_%04u.out", basist::basis_get_format_name(transcoder_tex_fmt), level_index, face_index, layer_index); else out_filename = base_filename + string_format("_unpacked_rgb_%s_%u_%04u.out", basist::basis_get_format_name(transcoder_tex_fmt), face_index, layer_index); if (!write_3dfx_out_file(out_filename.c_str(), gi[level_index])) { error_printf("Failed writing to OUT file \"%s\"\n", out_filename.c_str()); return false; } printf("Wrote .OUT file \"%s\"\n", out_filename.c_str()); } if (basis_transcoder_format_has_alpha(transcoder_tex_fmt) && (!opts.m_ktx_only) && (write_png)) { std::string a_filename; if (gi.size() > 1) a_filename = base_filename + string_format("_unpacked_a_%s_%u_%u_%04u.png", basist::basis_get_format_name(transcoder_tex_fmt), level_index, face_index, layer_index); else a_filename = base_filename + string_format("_unpacked_a_%s_%u_%04u.png", basist::basis_get_format_name(transcoder_tex_fmt), face_index, layer_index); if (!save_png(a_filename, u, cImageSaveGrayscale, 3)) { error_printf("Failed writing to PNG file \"%s\"\n", a_filename.c_str()); return false; } printf("Wrote PNG file \"%s\"\n", a_filename.c_str()); std::string rgba_filename; if (gi.size() > 1) rgba_filename = base_filename + string_format("_unpacked_rgba_%s_%u_%04u.png", basist::basis_get_format_name(transcoder_tex_fmt), level_index, face_index, layer_index); else rgba_filename = base_filename + string_format("_unpacked_rgba_%s_%u_%04u.png", basist::basis_get_format_name(transcoder_tex_fmt), face_index, layer_index); if (!save_png(rgba_filename, u)) { error_printf("Failed writing to PNG file \"%s\"\n", rgba_filename.c_str()); return false; } printf("Wrote PNG file \"%s\"\n", rgba_filename.c_str()); } } // level_index } // face_index } // layer_index } // format_iter } // if (!validate_flag) return true; } static bool unpack_and_validate_basis_file( uint32_t file_index, const std::string &base_filename, uint8_vec &basis_file_data, command_line_params& opts, FILE *pCSV_file, basis_data* pGlobal_codebook_data, uint32_t &total_unpack_warnings, uint32_t &total_pvrtc_nonpow2_warnings) { const bool validate_flag = (opts.m_mode == cValidate); basist::basisu_transcoder dec; if (pGlobal_codebook_data) { dec.set_global_codebooks(&pGlobal_codebook_data->m_transcoder.get_lowlevel_etc1s_decoder()); } if (!opts.m_fuzz_testing) { // Skip the full validation, which CRC16's the entire file. // Validate the file - note this isn't necessary for transcoding if (!dec.validate_file_checksums(&basis_file_data[0], (uint32_t)basis_file_data.size(), true)) { error_printf("File version is unsupported, or file failed one or more CRC checks!\n"); return false; } } printf("File version and CRC checks succeeded\n"); basist::basisu_file_info fileinfo; if (!dec.get_file_info(&basis_file_data[0], (uint32_t)basis_file_data.size(), fileinfo)) { error_printf("Failed retrieving Basis file information!\n"); return false; } assert(fileinfo.m_total_images == fileinfo.m_image_mipmap_levels.size()); assert(fileinfo.m_total_images == dec.get_total_images(&basis_file_data[0], (uint32_t)basis_file_data.size())); printf("File info:\n"); printf(" Version: %X\n", fileinfo.m_version); printf(" Total header size: %u\n", fileinfo.m_total_header_size); printf(" Total selectors: %u\n", fileinfo.m_total_selectors); printf(" Selector codebook size: %u\n", fileinfo.m_selector_codebook_size); printf(" Total endpoints: %u\n", fileinfo.m_total_endpoints); printf(" Endpoint codebook size: %u\n", fileinfo.m_endpoint_codebook_size); printf(" Tables size: %u\n", fileinfo.m_tables_size); printf(" Slices size: %u\n", fileinfo.m_slices_size); printf(" Texture format: %s\n", (fileinfo.m_tex_format == basist::basis_tex_format::cUASTC4x4) ? "UASTC" : "ETC1S"); printf(" Texture type: %s\n", basist::basis_get_texture_type_name(fileinfo.m_tex_type)); printf(" us per frame: %u (%f fps)\n", fileinfo.m_us_per_frame, fileinfo.m_us_per_frame ? (1.0f / ((float)fileinfo.m_us_per_frame / 1000000.0f)) : 0.0f); printf(" Total slices: %u\n", (uint32_t)fileinfo.m_slice_info.size()); printf(" Total images: %i\n", fileinfo.m_total_images); printf(" Y Flipped: %u, Has alpha slices: %u\n", fileinfo.m_y_flipped, fileinfo.m_has_alpha_slices); printf(" userdata0: 0x%X userdata1: 0x%X\n", fileinfo.m_userdata0, fileinfo.m_userdata1); printf(" Per-image mipmap levels: "); for (uint32_t i = 0; i < fileinfo.m_total_images; i++) printf("%u ", fileinfo.m_image_mipmap_levels[i]); printf("\n"); uint32_t total_texels = 0; printf("\nImage info:\n"); for (uint32_t i = 0; i < fileinfo.m_total_images; i++) { basist::basisu_image_info ii; if (!dec.get_image_info(&basis_file_data[0], (uint32_t)basis_file_data.size(), ii, i)) { error_printf("get_image_info() failed!\n"); return false; } printf("Image %u: MipLevels: %u OrigDim: %ux%u, BlockDim: %ux%u, FirstSlice: %u, HasAlpha: %u\n", i, ii.m_total_levels, ii.m_orig_width, ii.m_orig_height, ii.m_num_blocks_x, ii.m_num_blocks_y, ii.m_first_slice_index, (uint32_t)ii.m_alpha_flag); total_texels += ii.m_width * ii.m_height; } printf("\nSlice info:\n"); for (uint32_t i = 0; i < fileinfo.m_slice_info.size(); i++) { const basist::basisu_slice_info& sliceinfo = fileinfo.m_slice_info[i]; printf("%u: OrigWidthHeight: %ux%u, BlockDim: %ux%u, TotalBlocks: %u, Compressed size: %u, Image: %u, Level: %u, UnpackedCRC16: 0x%X, alpha: %u, iframe: %i\n", i, sliceinfo.m_orig_width, sliceinfo.m_orig_height, sliceinfo.m_num_blocks_x, sliceinfo.m_num_blocks_y, sliceinfo.m_total_blocks, sliceinfo.m_compressed_size, sliceinfo.m_image_index, sliceinfo.m_level_index, sliceinfo.m_unpacked_slice_crc16, (uint32_t)sliceinfo.m_alpha_flag, (uint32_t)sliceinfo.m_iframe_flag); } printf("\n"); size_t comp_size = 0; void* pComp_data = tdefl_compress_mem_to_heap(&basis_file_data[0], basis_file_data.size(), &comp_size, TDEFL_MAX_PROBES_MASK);// TDEFL_DEFAULT_MAX_PROBES); mz_free(pComp_data); const float basis_bits_per_texel = basis_file_data.size() * 8.0f / total_texels; const float comp_bits_per_texel = comp_size * 8.0f / total_texels; printf("Original size: %u, bits per texel: %3.3f\nCompressed size (Deflate): %u, bits per texel: %3.3f\n", (uint32_t)basis_file_data.size(), basis_bits_per_texel, (uint32_t)comp_size, comp_bits_per_texel); if (opts.m_mode == cInfo) { return true; } if ((fileinfo.m_etc1s) && (fileinfo.m_selector_codebook_size == 0) && (fileinfo.m_endpoint_codebook_size == 0)) { // File is ETC1S and uses global codebooks - make sure we loaded one if (!pGlobal_codebook_data) { error_printf("ETC1S file uses global codebooks, but none were loaded (see the -use_global_codebooks option)\n"); return false; } if ((pGlobal_codebook_data->m_transcoder.get_lowlevel_etc1s_decoder().get_endpoints().size() != fileinfo.m_total_endpoints) || (pGlobal_codebook_data->m_transcoder.get_lowlevel_etc1s_decoder().get_selectors().size() != fileinfo.m_total_selectors)) { error_printf("Supplied global codebook is not compatible with this file\n"); return false; } } interval_timer tm; tm.start(); if (!dec.start_transcoding(&basis_file_data[0], (uint32_t)basis_file_data.size())) { error_printf("start_transcoding() failed!\n"); return false; } const double start_transcoding_time_ms = tm.get_elapsed_ms(); printf("start_transcoding time: %3.3f ms\n", start_transcoding_time_ms); basisu::vector< gpu_image_vec > gpu_images[(int)basist::transcoder_texture_format::cTFTotalTextureFormats]; double total_format_transcoding_time_ms[(int)basist::transcoder_texture_format::cTFTotalTextureFormats]; clear_obj(total_format_transcoding_time_ms); int first_format = 0; int last_format = (int)basist::transcoder_texture_format::cTFTotalTextureFormats; if (opts.m_format_only > -1) { first_format = opts.m_format_only; last_format = first_format + 1; } if ((pCSV_file) && (file_index == 0)) { std::string desc; desc = "filename,basis_bitrate,comp_bitrate,images,levels,slices,start_transcoding_time,"; for (int format_iter = first_format; format_iter < last_format; format_iter++) { const basist::transcoder_texture_format transcoder_tex_fmt = static_cast(format_iter); if (!basis_is_format_supported(transcoder_tex_fmt, fileinfo.m_tex_format)) continue; if (transcoder_tex_fmt == basist::transcoder_texture_format::cTFBC7_ALT) continue; desc += std::string(basis_get_format_name(transcoder_tex_fmt)); if (format_iter != last_format - 1) desc += ","; } fprintf(pCSV_file, "%s\n", desc.c_str()); } for (int format_iter = first_format; format_iter < last_format; format_iter++) { basist::transcoder_texture_format tex_fmt = static_cast(format_iter); if (basist::basis_transcoder_format_is_uncompressed(tex_fmt)) continue; if (!basis_is_format_supported(tex_fmt, fileinfo.m_tex_format)) continue; if (tex_fmt == basist::transcoder_texture_format::cTFBC7_ALT) continue; gpu_images[(int)tex_fmt].resize(fileinfo.m_total_images); for (uint32_t image_index = 0; image_index < fileinfo.m_total_images; image_index++) gpu_images[(int)tex_fmt][image_index].resize(fileinfo.m_image_mipmap_levels[image_index]); } // Now transcode the file to all supported texture formats and save mipmapped KTX files for (int format_iter = first_format; format_iter < last_format; format_iter++) { const basist::transcoder_texture_format transcoder_tex_fmt = static_cast(format_iter); if (basist::basis_transcoder_format_is_uncompressed(transcoder_tex_fmt)) continue; if (!basis_is_format_supported(transcoder_tex_fmt, fileinfo.m_tex_format)) continue; if (transcoder_tex_fmt == basist::transcoder_texture_format::cTFBC7_ALT) continue; for (uint32_t image_index = 0; image_index < fileinfo.m_total_images; image_index++) { for (uint32_t level_index = 0; level_index < fileinfo.m_image_mipmap_levels[image_index]; level_index++) { basist::basisu_image_level_info level_info; if (!dec.get_image_level_info(&basis_file_data[0], (uint32_t)basis_file_data.size(), level_info, image_index, level_index)) { error_printf("Failed retrieving image level information (%u %u)!\n", image_index, level_index); return false; } if ((transcoder_tex_fmt == basist::transcoder_texture_format::cTFPVRTC1_4_RGB) || (transcoder_tex_fmt == basist::transcoder_texture_format::cTFPVRTC1_4_RGBA)) { if (!is_pow2(level_info.m_width) || !is_pow2(level_info.m_height)) { total_pvrtc_nonpow2_warnings++; printf("Warning: Will not transcode image %u level %u res %ux%u to PVRTC1 (one or more dimension is not a power of 2)\n", image_index, level_index, level_info.m_width, level_info.m_height); // Can't transcode this image level to PVRTC because it's not a pow2 (we're going to support transcoding non-pow2 to the next larger pow2 soon) continue; } } basisu::texture_format tex_fmt = basis_get_basisu_texture_format(transcoder_tex_fmt); gpu_image& gi = gpu_images[(int)transcoder_tex_fmt][image_index][level_index]; gi.init(tex_fmt, level_info.m_orig_width, level_info.m_orig_height); // Fill the buffer with psuedo-random bytes, to help more visibly detect cases where the transcoder fails to write to part of the output. fill_buffer_with_random_bytes(gi.get_ptr(), gi.get_size_in_bytes()); uint32_t decode_flags = 0; tm.start(); if (!dec.transcode_image_level(&basis_file_data[0], (uint32_t)basis_file_data.size(), image_index, level_index, gi.get_ptr(), gi.get_total_blocks(), transcoder_tex_fmt, decode_flags)) { error_printf("Failed transcoding image level (%u %u %u)!\n", image_index, level_index, format_iter); return false; } double total_transcode_time = tm.get_elapsed_ms(); total_format_transcoding_time_ms[format_iter] += total_transcode_time; printf("Transcode of image %u level %u res %ux%u format %s succeeded in %3.3f ms\n", image_index, level_index, level_info.m_orig_width, level_info.m_orig_height, basist::basis_get_format_name(transcoder_tex_fmt), total_transcode_time); } // format_iter } // level_index } // image_info // Upack UASTC files separarely, to validate we can transcode slices to UASTC and unpack them to pixels. // This is a special path because UASTC is not yet a valid transcoder_texture_format, but a lower-level block_format. if (fileinfo.m_tex_format == basist::basis_tex_format::cUASTC4x4) { for (uint32_t image_index = 0; image_index < fileinfo.m_total_images; image_index++) { for (uint32_t level_index = 0; level_index < fileinfo.m_image_mipmap_levels[image_index]; level_index++) { basist::basisu_image_level_info level_info; if (!dec.get_image_level_info(&basis_file_data[0], (uint32_t)basis_file_data.size(), level_info, image_index, level_index)) { error_printf("Failed retrieving image level information (%u %u)!\n", image_index, level_index); return false; } gpu_image gi; gi.init(basisu::texture_format::cUASTC4x4, level_info.m_orig_width, level_info.m_orig_height); // Fill the buffer with psuedo-random bytes, to help more visibly detect cases where the transcoder fails to write to part of the output. fill_buffer_with_random_bytes(gi.get_ptr(), gi.get_size_in_bytes()); //uint32_t decode_flags = 0; tm.start(); if (!dec.transcode_slice( &basis_file_data[0], (uint32_t)basis_file_data.size(), level_info.m_first_slice_index, gi.get_ptr(), gi.get_total_blocks(), basist::block_format::cUASTC_4x4, gi.get_bytes_per_block())) { error_printf("Failed transcoding image level (%u %u) to UASTC!\n", image_index, level_index); return false; } double total_transcode_time = tm.get_elapsed_ms(); printf("Transcode of image %u level %u res %ux%u format UASTC_4x4 succeeded in %3.3f ms\n", image_index, level_index, level_info.m_orig_width, level_info.m_orig_height, total_transcode_time); if ((!validate_flag) && (!opts.m_ktx_only)) { image u; if (!gi.unpack(u)) { error_printf("Warning: Failed unpacking GPU texture data (%u %u) to UASTC. \n", image_index, level_index); return false; } //u.crop(level_info.m_orig_width, level_info.m_orig_height); std::string rgb_filename; if (fileinfo.m_image_mipmap_levels[image_index] > 1) rgb_filename = base_filename + string_format("_unpacked_rgb_UASTC_4x4_%u_%04u.png", level_index, image_index); else rgb_filename = base_filename + string_format("_unpacked_rgb_UASTC_4x4_%04u.png", image_index); if (!save_png(rgb_filename, u, cImageSaveIgnoreAlpha)) { error_printf("Failed writing to PNG file \"%s\"\n", rgb_filename.c_str()); delete pGlobal_codebook_data; pGlobal_codebook_data = nullptr; return false; } printf("Wrote PNG file \"%s\"\n", rgb_filename.c_str()); std::string alpha_filename; if (fileinfo.m_image_mipmap_levels[image_index] > 1) alpha_filename = base_filename + string_format("_unpacked_a_UASTC_4x4_%u_%04u.png", level_index, image_index); else alpha_filename = base_filename + string_format("_unpacked_a_UASTC_4x4_%04u.png", image_index); if (!save_png(alpha_filename, u, cImageSaveGrayscale, 3)) { error_printf("Failed writing to PNG file \"%s\"\n", rgb_filename.c_str()); delete pGlobal_codebook_data; pGlobal_codebook_data = nullptr; return false; } printf("Wrote PNG file \"%s\"\n", alpha_filename.c_str()); } } } } if (!validate_flag) { // Now write KTX files and unpack them to individual PNG's for (int format_iter = first_format; format_iter < last_format; format_iter++) { const basist::transcoder_texture_format transcoder_tex_fmt = static_cast(format_iter); if (basist::basis_transcoder_format_is_uncompressed(transcoder_tex_fmt)) continue; if (!basis_is_format_supported(transcoder_tex_fmt, fileinfo.m_tex_format)) continue; if (transcoder_tex_fmt == basist::transcoder_texture_format::cTFBC7_ALT) continue; if ((!opts.m_no_ktx) && (fileinfo.m_tex_type == basist::cBASISTexTypeCubemapArray)) { // No KTX tool that we know of supports cubemap arrays, so write individual cubemap files. for (uint32_t image_index = 0; image_index < fileinfo.m_total_images; image_index += 6) { basisu::vector cubemap; for (uint32_t i = 0; i < 6; i++) cubemap.push_back(gpu_images[format_iter][image_index + i]); std::string ktx_filename(base_filename + string_format("_transcoded_cubemap_%s_%u.ktx", basist::basis_get_format_name(transcoder_tex_fmt), image_index / 6)); if (!write_compressed_texture_file(ktx_filename.c_str(), cubemap, true)) { error_printf("Failed writing KTX file \"%s\"!\n", ktx_filename.c_str()); return false; } printf("Wrote KTX file \"%s\"\n", ktx_filename.c_str()); } } for (uint32_t image_index = 0; image_index < fileinfo.m_total_images; image_index++) { gpu_image_vec& gi = gpu_images[format_iter][image_index]; if (!gi.size()) continue; uint32_t level; for (level = 0; level < gi.size(); level++) if (!gi[level].get_total_blocks()) break; if (level < gi.size()) continue; if ((!opts.m_no_ktx) && (fileinfo.m_tex_type != basist::cBASISTexTypeCubemapArray)) { std::string ktx_filename(base_filename + string_format("_transcoded_%s_%04u.ktx", basist::basis_get_format_name(transcoder_tex_fmt), image_index)); if (!write_compressed_texture_file(ktx_filename.c_str(), gi)) { error_printf("Failed writing KTX file \"%s\"!\n", ktx_filename.c_str()); return false; } printf("Wrote KTX file \"%s\"\n", ktx_filename.c_str()); } for (uint32_t level_index = 0; level_index < gi.size(); level_index++) { basist::basisu_image_level_info level_info; if (!dec.get_image_level_info(&basis_file_data[0], (uint32_t)basis_file_data.size(), level_info, image_index, level_index)) { error_printf("Failed retrieving image level information (%u %u)!\n", image_index, level_index); return false; } image u; if (!gi[level_index].unpack(u)) { printf("Warning: Failed unpacking GPU texture data (%u %u %u). Unpacking as much as possible.\n", format_iter, image_index, level_index); total_unpack_warnings++; } //u.crop(level_info.m_orig_width, level_info.m_orig_height); bool is_astc = (transcoder_tex_fmt == basist::transcoder_texture_format::cTFASTC_4x4_RGBA); bool write_png = true; #if !BASISU_USE_ASTC_DECOMPRESS if (is_astc) write_png = false; #endif if ((!opts.m_ktx_only) && (write_png)) { std::string rgb_filename; if (gi.size() > 1) rgb_filename = base_filename + string_format("_unpacked_rgb_%s_%u_%04u.png", basist::basis_get_format_name(transcoder_tex_fmt), level_index, image_index); else rgb_filename = base_filename + string_format("_unpacked_rgb_%s_%04u.png", basist::basis_get_format_name(transcoder_tex_fmt), image_index); if (!save_png(rgb_filename, u, cImageSaveIgnoreAlpha)) { error_printf("Failed writing to PNG file \"%s\"\n", rgb_filename.c_str()); delete pGlobal_codebook_data; pGlobal_codebook_data = nullptr; return false; } printf("Wrote PNG file \"%s\"\n", rgb_filename.c_str()); } if ((transcoder_tex_fmt == basist::transcoder_texture_format::cTFFXT1_RGB) && (opts.m_write_out)) { std::string out_filename; if (gi.size() > 1) out_filename = base_filename + string_format("_unpacked_rgb_%s_%u_%04u.out", basist::basis_get_format_name(transcoder_tex_fmt), level_index, image_index); else out_filename = base_filename + string_format("_unpacked_rgb_%s_%04u.out", basist::basis_get_format_name(transcoder_tex_fmt), image_index); if (!write_3dfx_out_file(out_filename.c_str(), gi[level_index])) { error_printf("Failed writing to OUT file \"%s\"\n", out_filename.c_str()); return false; } printf("Wrote .OUT file \"%s\"\n", out_filename.c_str()); } if (basis_transcoder_format_has_alpha(transcoder_tex_fmt) && (!opts.m_ktx_only) && (write_png)) { std::string a_filename; if (gi.size() > 1) a_filename = base_filename + string_format("_unpacked_a_%s_%u_%04u.png", basist::basis_get_format_name(transcoder_tex_fmt), level_index, image_index); else a_filename = base_filename + string_format("_unpacked_a_%s_%04u.png", basist::basis_get_format_name(transcoder_tex_fmt), image_index); if (!save_png(a_filename, u, cImageSaveGrayscale, 3)) { error_printf("Failed writing to PNG file \"%s\"\n", a_filename.c_str()); return false; } printf("Wrote PNG file \"%s\"\n", a_filename.c_str()); std::string rgba_filename; if (gi.size() > 1) rgba_filename = base_filename + string_format("_unpacked_rgba_%s_%u_%04u.png", basist::basis_get_format_name(transcoder_tex_fmt), level_index, image_index); else rgba_filename = base_filename + string_format("_unpacked_rgba_%s_%04u.png", basist::basis_get_format_name(transcoder_tex_fmt), image_index); if (!save_png(rgba_filename, u)) { error_printf("Failed writing to PNG file \"%s\"\n", rgba_filename.c_str()); return false; } printf("Wrote PNG file \"%s\"\n", rgba_filename.c_str()); } } // level_index } // image_index } // format_iter } // if (!validate_flag) uint32_t max_mipmap_levels = 0; //if (!opts.m_etc1_only) if (opts.m_format_only == -1) { // Now unpack to RGBA using the transcoder itself to do the unpacking to raster images for (uint32_t image_index = 0; image_index < fileinfo.m_total_images; image_index++) { for (uint32_t level_index = 0; level_index < fileinfo.m_image_mipmap_levels[image_index]; level_index++) { const basist::transcoder_texture_format transcoder_tex_fmt = basist::transcoder_texture_format::cTFRGBA32; basist::basisu_image_level_info level_info; if (!dec.get_image_level_info(&basis_file_data[0], (uint32_t)basis_file_data.size(), level_info, image_index, level_index)) { error_printf("Failed retrieving image level information (%u %u)!\n", image_index, level_index); return false; } image img(level_info.m_orig_width, level_info.m_orig_height); fill_buffer_with_random_bytes(&img(0, 0), img.get_total_pixels() * sizeof(uint32_t)); tm.start(); if (!dec.transcode_image_level(&basis_file_data[0], (uint32_t)basis_file_data.size(), image_index, level_index, &img(0, 0).r, img.get_total_pixels(), transcoder_tex_fmt, 0, img.get_pitch(), nullptr, img.get_height())) { error_printf("Failed transcoding image level (%u %u %u)!\n", image_index, level_index, transcoder_tex_fmt); return false; } double total_transcode_time = tm.get_elapsed_ms(); total_format_transcoding_time_ms[(int)transcoder_tex_fmt] += total_transcode_time; printf("Transcode of image %u level %u res %ux%u format %s succeeded in %3.3f ms\n", image_index, level_index, level_info.m_orig_width, level_info.m_orig_height, basist::basis_get_format_name(transcoder_tex_fmt), total_transcode_time); if ((!validate_flag) && (!opts.m_ktx_only)) { std::string rgb_filename(base_filename + string_format("_unpacked_rgb_%s_%u_%04u.png", basist::basis_get_format_name(transcoder_tex_fmt), level_index, image_index)); if (!save_png(rgb_filename, img, cImageSaveIgnoreAlpha)) { error_printf("Failed writing to PNG file \"%s\"\n", rgb_filename.c_str()); return false; } printf("Wrote PNG file \"%s\"\n", rgb_filename.c_str()); std::string a_filename(base_filename + string_format("_unpacked_a_%s_%u_%04u.png", basist::basis_get_format_name(transcoder_tex_fmt), level_index, image_index)); if (!save_png(a_filename, img, cImageSaveGrayscale, 3)) { error_printf("Failed writing to PNG file \"%s\"\n", a_filename.c_str()); return false; } printf("Wrote PNG file \"%s\"\n", a_filename.c_str()); } } // level_index } // image_index // Now unpack to RGB565 using the transcoder itself to do the unpacking to raster images for (uint32_t image_index = 0; image_index < fileinfo.m_total_images; image_index++) { for (uint32_t level_index = 0; level_index < fileinfo.m_image_mipmap_levels[image_index]; level_index++) { const basist::transcoder_texture_format transcoder_tex_fmt = basist::transcoder_texture_format::cTFRGB565; basist::basisu_image_level_info level_info; if (!dec.get_image_level_info(&basis_file_data[0], (uint32_t)basis_file_data.size(), level_info, image_index, level_index)) { error_printf("Failed retrieving image level information (%u %u)!\n", image_index, level_index); return false; } basisu::vector packed_img(level_info.m_orig_width * level_info.m_orig_height); fill_buffer_with_random_bytes(&packed_img[0], packed_img.size() * sizeof(uint16_t)); tm.start(); if (!dec.transcode_image_level(&basis_file_data[0], (uint32_t)basis_file_data.size(), image_index, level_index, &packed_img[0], (uint32_t)packed_img.size(), transcoder_tex_fmt, 0, level_info.m_orig_width, nullptr, level_info.m_orig_height)) { error_printf("Failed transcoding image level (%u %u %u)!\n", image_index, level_index, transcoder_tex_fmt); return false; } double total_transcode_time = tm.get_elapsed_ms(); total_format_transcoding_time_ms[(int)transcoder_tex_fmt] += total_transcode_time; image img(level_info.m_orig_width, level_info.m_orig_height); for (uint32_t y = 0; y < level_info.m_orig_height; y++) { for (uint32_t x = 0; x < level_info.m_orig_width; x++) { const uint16_t p = packed_img[x + y * level_info.m_orig_width]; uint32_t r = p >> 11, g = (p >> 5) & 63, b = p & 31; r = (r << 3) | (r >> 2); g = (g << 2) | (g >> 4); b = (b << 3) | (b >> 2); img(x, y).set(r, g, b, 255); } } printf("Transcode of image %u level %u res %ux%u format %s succeeded in %3.3f ms\n", image_index, level_index, level_info.m_orig_width, level_info.m_orig_height, basist::basis_get_format_name(transcoder_tex_fmt), total_transcode_time); if ((!validate_flag) && (!opts.m_ktx_only)) { std::string rgb_filename(base_filename + string_format("_unpacked_rgb_%s_%u_%04u.png", basist::basis_get_format_name(transcoder_tex_fmt), level_index, image_index)); if (!save_png(rgb_filename, img, cImageSaveIgnoreAlpha)) { error_printf("Failed writing to PNG file \"%s\"\n", rgb_filename.c_str()); return false; } printf("Wrote PNG file \"%s\"\n", rgb_filename.c_str()); } } // level_index } // image_index // Now unpack to RGBA4444 using the transcoder itself to do the unpacking to raster images for (uint32_t image_index = 0; image_index < fileinfo.m_total_images; image_index++) { for (uint32_t level_index = 0; level_index < fileinfo.m_image_mipmap_levels[image_index]; level_index++) { max_mipmap_levels = basisu::maximum(max_mipmap_levels, fileinfo.m_image_mipmap_levels[image_index]); const basist::transcoder_texture_format transcoder_tex_fmt = basist::transcoder_texture_format::cTFRGBA4444; basist::basisu_image_level_info level_info; if (!dec.get_image_level_info(&basis_file_data[0], (uint32_t)basis_file_data.size(), level_info, image_index, level_index)) { error_printf("Failed retrieving image level information (%u %u)!\n", image_index, level_index); return false; } basisu::vector packed_img(level_info.m_orig_width * level_info.m_orig_height); fill_buffer_with_random_bytes(&packed_img[0], packed_img.size() * sizeof(uint16_t)); tm.start(); if (!dec.transcode_image_level(&basis_file_data[0], (uint32_t)basis_file_data.size(), image_index, level_index, &packed_img[0], (uint32_t)packed_img.size(), transcoder_tex_fmt, 0, level_info.m_orig_width, nullptr, level_info.m_orig_height)) { error_printf("Failed transcoding image level (%u %u %u)!\n", image_index, level_index, transcoder_tex_fmt); return false; } double total_transcode_time = tm.get_elapsed_ms(); total_format_transcoding_time_ms[(int)transcoder_tex_fmt] += total_transcode_time; image img(level_info.m_orig_width, level_info.m_orig_height); for (uint32_t y = 0; y < level_info.m_orig_height; y++) { for (uint32_t x = 0; x < level_info.m_orig_width; x++) { const uint16_t p = packed_img[x + y * level_info.m_orig_width]; uint32_t r = p >> 12, g = (p >> 8) & 15, b = (p >> 4) & 15, a = p & 15; r = (r << 4) | r; g = (g << 4) | g; b = (b << 4) | b; a = (a << 4) | a; img(x, y).set(r, g, b, a); } } printf("Transcode of image %u level %u res %ux%u format %s succeeded in %3.3f ms\n", image_index, level_index, level_info.m_orig_width, level_info.m_orig_height, basist::basis_get_format_name(transcoder_tex_fmt), total_transcode_time); if ((!validate_flag) && (!opts.m_ktx_only)) { std::string rgb_filename(base_filename + string_format("_unpacked_rgb_%s_%u_%04u.png", basist::basis_get_format_name(transcoder_tex_fmt), level_index, image_index)); if (!save_png(rgb_filename, img, cImageSaveIgnoreAlpha)) { error_printf("Failed writing to PNG file \"%s\"\n", rgb_filename.c_str()); return false; } printf("Wrote PNG file \"%s\"\n", rgb_filename.c_str()); std::string a_filename(base_filename + string_format("_unpacked_a_%s_%u_%04u.png", basist::basis_get_format_name(transcoder_tex_fmt), level_index, image_index)); if (!save_png(a_filename, img, cImageSaveGrayscale, 3)) { error_printf("Failed writing to PNG file \"%s\"\n", a_filename.c_str()); return false; } printf("Wrote PNG file \"%s\"\n", a_filename.c_str()); } } // level_index } // image_index } // if (!m_etc1_only) if (pCSV_file) { fprintf(pCSV_file, "%s, %3.3f, %3.3f, %u, %u, %u, %3.3f, ", base_filename.c_str(), basis_bits_per_texel, comp_bits_per_texel, fileinfo.m_total_images, max_mipmap_levels, (uint32_t)fileinfo.m_slice_info.size(), start_transcoding_time_ms); for (int format_iter = first_format; format_iter < last_format; format_iter++) { const basist::transcoder_texture_format transcoder_tex_fmt = static_cast(format_iter); if (!basis_is_format_supported(transcoder_tex_fmt, fileinfo.m_tex_format)) continue; if (transcoder_tex_fmt == basist::transcoder_texture_format::cTFBC7_ALT) continue; fprintf(pCSV_file, "%3.3f", total_format_transcoding_time_ms[format_iter]); if (format_iter != (last_format - 1)) fprintf(pCSV_file, ","); } fprintf(pCSV_file, "\n"); } return true; } static bool unpack_and_validate_mode(command_line_params &opts) { interval_timer tm; tm.start(); //const bool validate_flag = (opts.m_mode == cValidate); basis_data* pGlobal_codebook_data = nullptr; if (opts.m_etc1s_use_global_codebooks_file.size()) { pGlobal_codebook_data = load_basis_file(opts.m_etc1s_use_global_codebooks_file.c_str(), true); if (!pGlobal_codebook_data) { error_printf("Failed loading global codebook data from file \"%s\"\n", opts.m_etc1s_use_global_codebooks_file.c_str()); return false; } printf("Loaded global codebooks from file \"%s\"\n", opts.m_etc1s_use_global_codebooks_file.c_str()); } if (!opts.m_input_filenames.size()) { error_printf("No input files to process!\n"); delete pGlobal_codebook_data; pGlobal_codebook_data = nullptr; return false; } FILE* pCSV_file = nullptr; if ((opts.m_csv_file.size()) && (opts.m_mode == cValidate)) { pCSV_file = fopen_safe(opts.m_csv_file.c_str(), "w"); if (!pCSV_file) { error_printf("Failed opening CVS file \"%s\"\n", opts.m_csv_file.c_str()); delete pGlobal_codebook_data; pGlobal_codebook_data = nullptr; return false; } //fprintf(pCSV_file, "Filename, Size, Slices, Width, Height, HasAlpha, BitsPerTexel, Slice0RGBAvgPSNR, Slice0RGBAAvgPSNR, Slice0Luma709PSNR, Slice0BestETC1SLuma709PSNR, Q, CL, Time, RGBAvgPSNRMin, RGBAvgPSNRAvg, AAvgPSNRMin, AAvgPSNRAvg, Luma709PSNRMin, Luma709PSNRAvg\n"); } uint32_t total_unpack_warnings = 0; uint32_t total_pvrtc_nonpow2_warnings = 0; for (uint32_t file_index = 0; file_index < opts.m_input_filenames.size(); file_index++) { const char* pInput_filename = opts.m_input_filenames[file_index].c_str(); std::string base_filename; string_split_path(pInput_filename, nullptr, nullptr, &base_filename, nullptr); uint8_vec file_data; if (!basisu::read_file_to_vec(pInput_filename, file_data)) { error_printf("Failed reading file \"%s\"\n", pInput_filename); if (pCSV_file) fclose(pCSV_file); delete pGlobal_codebook_data; pGlobal_codebook_data = nullptr; return false; } if (!file_data.size()) { error_printf("File is empty!\n"); if (pCSV_file) fclose(pCSV_file); delete pGlobal_codebook_data; pGlobal_codebook_data = nullptr; return false; } if (file_data.size() > UINT32_MAX) { error_printf("File is too large!\n"); if (pCSV_file) fclose(pCSV_file); delete pGlobal_codebook_data; pGlobal_codebook_data = nullptr; return false; } bool is_ktx2 = false; if (file_data.size() >= sizeof(basist::g_ktx2_file_identifier)) { is_ktx2 = (memcmp(file_data.data(), basist::g_ktx2_file_identifier, sizeof(basist::g_ktx2_file_identifier)) == 0); } printf("Input file \"%s\", KTX2: %u\n", pInput_filename, is_ktx2); bool status; if (is_ktx2) { status = unpack_and_validate_ktx2_file( file_index, base_filename, file_data, opts, pCSV_file, pGlobal_codebook_data, total_unpack_warnings, total_pvrtc_nonpow2_warnings); } else { status = unpack_and_validate_basis_file( file_index, base_filename, file_data, opts, pCSV_file, pGlobal_codebook_data, total_unpack_warnings, total_pvrtc_nonpow2_warnings); } if (!status) { if (pCSV_file) fclose(pCSV_file); delete pGlobal_codebook_data; pGlobal_codebook_data = nullptr; return false; } } // file_index if (total_pvrtc_nonpow2_warnings) printf("Warning: %u images could not be transcoded to PVRTC1 because one or both dimensions were not a power of 2\n", total_pvrtc_nonpow2_warnings); if (total_unpack_warnings) printf("ATTENTION: %u total images had invalid GPU texture data!\n", total_unpack_warnings); else printf("Success\n"); debug_printf("Elapsed time: %3.3f secs\n", tm.get_elapsed_secs()); if (pCSV_file) { fclose(pCSV_file); pCSV_file = nullptr; } delete pGlobal_codebook_data; pGlobal_codebook_data = nullptr; return true; } static bool compare_mode(command_line_params &opts) { if (opts.m_input_filenames.size() != 2) { error_printf("Must specify two PNG filenames using -file\n"); return false; } image a, b; if (!load_image(opts.m_input_filenames[0].c_str(), a)) { error_printf("Failed loading image from file \"%s\"!\n", opts.m_input_filenames[0].c_str()); return false; } printf("Loaded \"%s\", %ux%u, has alpha: %u\n", opts.m_input_filenames[0].c_str(), a.get_width(), a.get_height(), a.has_alpha()); if (!load_image(opts.m_input_filenames[1].c_str(), b)) { error_printf("Failed loading image from file \"%s\"!\n", opts.m_input_filenames[1].c_str()); return false; } printf("Loaded \"%s\", %ux%u, has alpha: %u\n", opts.m_input_filenames[1].c_str(), b.get_width(), b.get_height(), b.has_alpha()); if ((a.get_width() != b.get_width()) || (a.get_height() != b.get_height())) { printf("Images don't have the same dimensions - cropping input images to smallest common dimensions\n"); uint32_t w = minimum(a.get_width(), b.get_width()); uint32_t h = minimum(a.get_height(), b.get_height()); a.crop(w, h); b.crop(w, h); } printf("Comparison image res: %ux%u\n", a.get_width(), a.get_height()); image_metrics im; im.calc(a, b, 0, 3); im.print("RGB "); im.calc(a, b, 0, 4); im.print("RGBA "); im.calc(a, b, 0, 1); im.print("R "); im.calc(a, b, 1, 1); im.print("G "); im.calc(a, b, 2, 1); im.print("B "); im.calc(a, b, 3, 1); im.print("A "); im.calc(a, b, 0, 0); im.print("Y 709 " ); im.calc(a, b, 0, 0, true, true); im.print("Y 601 " ); if (opts.m_compare_ssim) { vec4F s_rgb(compute_ssim(a, b, false, false)); printf("R SSIM: %f\n", s_rgb[0]); printf("G SSIM: %f\n", s_rgb[1]); printf("B SSIM: %f\n", s_rgb[2]); printf("RGB Avg SSIM: %f\n", (s_rgb[0] + s_rgb[1] + s_rgb[2]) / 3.0f); printf("A SSIM: %f\n", s_rgb[3]); vec4F s_y_709(compute_ssim(a, b, true, false)); printf("Y 709 SSIM: %f\n", s_y_709[0]); vec4F s_y_601(compute_ssim(a, b, true, true)); printf("Y 601 SSIM: %f\n", s_y_601[0]); } image delta_img(a.get_width(), a.get_height()); const int X = 2; for (uint32_t y = 0; y < a.get_height(); y++) { for (uint32_t x = 0; x < a.get_width(); x++) { color_rgba &d = delta_img(x, y); for (int c = 0; c < 4; c++) d[c] = (uint8_t)clamp((a(x, y)[c] - b(x, y)[c]) * X + 128, 0, 255); } // x } // y save_png("a_rgb.png", a, cImageSaveIgnoreAlpha); save_png("a_alpha.png", a, cImageSaveGrayscale, 3); printf("Wrote a_rgb.png and a_alpha.png\n"); save_png("b_rgb.png", b, cImageSaveIgnoreAlpha); save_png("b_alpha.png", b, cImageSaveGrayscale, 3); printf("Wrote b_rgb.png and b_alpha.png\n"); save_png("delta_img_rgb.png", delta_img, cImageSaveIgnoreAlpha); printf("Wrote delta_img_rgb.png\n"); save_png("delta_img_a.png", delta_img, cImageSaveGrayscale, 3); printf("Wrote delta_img_a.png\n"); if (opts.m_compare_plot) { uint32_t bins[5][512]; clear_obj(bins); running_stat delta_stats[5]; basisu::rand rm; double avg[5]; clear_obj(avg); for (uint32_t y = 0; y < a.get_height(); y++) { for (uint32_t x = 0; x < a.get_width(); x++) { //color_rgba& d = delta_img(x, y); for (int c = 0; c < 4; c++) { int delta = a(x, y)[c] - b(x, y)[c]; //delta = clamp((int)std::round(rm.gaussian(70.0f, 10.0f)), -255, 255); bins[c][delta + 256]++; delta_stats[c].push(delta); avg[c] += delta; } int y_delta = a(x, y).get_709_luma() - b(x, y).get_709_luma(); bins[4][y_delta + 256]++; delta_stats[4].push(y_delta); avg[4] += y_delta; } // x } // y for (uint32_t i = 0; i <= 4; i++) avg[i] /= a.get_total_pixels(); printf("\n"); //bins[2][256+-255] = 100000; //bins[2][256-56] = 50000; const uint32_t X_SIZE = 128, Y_SIZE = 40; for (uint32_t c = 0; c <= 4; c++) { std::vector plot[Y_SIZE + 1]; for (uint32_t i = 0; i < Y_SIZE; i++) { plot[i].resize(X_SIZE + 2); memset(plot[i].data(), ' ', X_SIZE + 1); } uint32_t max_val = 0; int max_val_bin_index = 0; int lowest_bin_index = INT_MAX, highest_bin_index = INT_MIN; double avg_val = 0; double total_val = 0; running_stat bin_stats; for (int y = -255; y <= 255; y++) { uint32_t val = bins[c][256 + y]; if (!val) continue; bin_stats.push(y); total_val += (double)val; lowest_bin_index = minimum(lowest_bin_index, y); highest_bin_index = maximum(highest_bin_index, y); if (val > max_val) { max_val = val; max_val_bin_index = y; } avg_val += y * (double)val; } avg_val /= total_val; int lo_limit = -(int)X_SIZE / 2; int hi_limit = X_SIZE / 2; for (int x = lo_limit; x <= hi_limit; x++) { uint32_t total = 0; if (x == lo_limit) { for (int i = -255; i <= lo_limit; i++) total += bins[c][256 + i]; } else if (x == hi_limit) { for (int i = hi_limit; i <= 255; i++) total += bins[c][256 + i]; } else { total = bins[c][256 + x]; } uint32_t height = max_val ? (total * Y_SIZE + max_val - 1) / max_val : 0; if (height) { for (uint32_t y = (Y_SIZE - 1) - (height - 1); y <= (Y_SIZE - 1); y++) plot[y][x + X_SIZE / 2] = '*'; } } printf("%c delta histogram: total samples: %5.0f, max bin value: %u index: %i (%3.3f%% of total), range %i [%i,%i], weighted mean: %f\n", "RGBAY"[c], total_val, max_val, max_val_bin_index, max_val * 100.0f / total_val, highest_bin_index - lowest_bin_index + 1, lowest_bin_index, highest_bin_index, avg_val); printf("bin mean: %f, bin std deviation: %f, non-zero bins: %u\n", bin_stats.get_mean(), bin_stats.get_std_dev(), bin_stats.get_num()); printf("delta mean: %f, delta std deviation: %f\n", delta_stats[c].get_mean(), delta_stats[c].get_std_dev()); printf("\n"); for (uint32_t y = 0; y < Y_SIZE; y++) printf("%s\n", (char*)plot[y].data()); char tics[1024]; tics[0] = '\0'; char tics2[1024]; tics2[0] = '\0'; for (int x = 0; x <= (int)X_SIZE; x++) { char buf[64]; if (x == X_SIZE / 2) { while ((int)strlen(tics) < x) strcat(tics, "."); while ((int)strlen(tics2) < x) strcat(tics2, " "); sprintf(buf, "0"); strcat(tics, buf); } else if (((x & 7) == 0) || (x == X_SIZE)) { while ((int)strlen(tics) < x) strcat(tics, "."); while ((int)strlen(tics2) < x) strcat(tics2, " "); int v = (x - (int)X_SIZE / 2); sprintf(buf, "%i", v / 10); strcat(tics, buf); if (v < 0) { if (-v < 10) sprintf(buf, "%i", v % 10); else sprintf(buf, " %i", -v % 10); } else sprintf(buf, "%i", v % 10); strcat(tics2, buf); } else { while ((int)strlen(tics) < x) strcat(tics, "."); } } printf("%s\n", tics); printf("%s\n", tics2); printf("\n"); } } // display_plot return true; } static bool split_image_mode(command_line_params& opts) { if (opts.m_input_filenames.size() != 1) { error_printf("Must specify one image filename using -file\n"); return false; } image a; if (!load_image(opts.m_input_filenames[0].c_str(), a)) { error_printf("Failed loading image from file \"%s\"!\n", opts.m_input_filenames[0].c_str()); return false; } printf("Loaded \"%s\", %ux%u, has alpha: %u\n", opts.m_input_filenames[0].c_str(), a.get_width(), a.get_height(), a.has_alpha()); if (!save_png("split_rgb.png", a, cImageSaveIgnoreAlpha)) { fprintf(stderr, "Failed writing file split_rgb.png\n"); return false; } printf("Wrote file split_rgb.png\n"); for (uint32_t i = 0; i < 4; i++) { char buf[256]; snprintf(buf, sizeof(buf), "split_%c.png", "RGBA"[i]); if (!save_png(buf, a, cImageSaveGrayscale, i)) { fprintf(stderr, "Failed writing file %s\n", buf); return false; } printf("Wrote file %s\n", buf); } return true; } static bool combine_images_mode(command_line_params& opts) { if (opts.m_input_filenames.size() != 2) { error_printf("Must specify two image filename using -file\n"); return false; } image a, b; if (!load_image(opts.m_input_filenames[0].c_str(), a)) { error_printf("Failed loading image from file \"%s\"!\n", opts.m_input_filenames[0].c_str()); return false; } printf("Loaded \"%s\", %ux%u, has alpha: %u\n", opts.m_input_filenames[0].c_str(), a.get_width(), a.get_height(), a.has_alpha()); if (!load_image(opts.m_input_filenames[1].c_str(), b)) { error_printf("Failed loading image from file \"%s\"!\n", opts.m_input_filenames[1].c_str()); return false; } printf("Loaded \"%s\", %ux%u, has alpha: %u\n", opts.m_input_filenames[1].c_str(), b.get_width(), b.get_height(), b.has_alpha()); const uint32_t width = minimum(a.get_width(), b.get_width()); const uint32_t height = minimum(b.get_height(), b.get_height()); image combined_img(width, height); for (uint32_t y = 0; y < height; y++) { for (uint32_t x = 0; x < width; x++) { combined_img(x, y) = a(x, y); combined_img(x, y).a = b(x, y).g; } } const char* pOutput_filename = "combined.png"; if (opts.m_output_filename.size()) pOutput_filename = opts.m_output_filename.c_str(); if (!save_png(pOutput_filename, combined_img)) { fprintf(stderr, "Failed writing file %s\n", pOutput_filename); return false; } printf("Wrote file %s\n", pOutput_filename); return true; } //#include "encoder/basisu_astc_decomp.h" #include "encoder/basisu_pvrtc1_4.h" static bool bench_mode(command_line_params& opts) { #if 0 ispc::bc7e_compress_block_init(); ispc::bc7e_compress_block_params pack_params; memset(&pack_params, 0, sizeof(pack_params)); ispc::bc7e_compress_block_params_init_slow(&pack_params, false); #endif const uint32_t JOB_POOL_SIZE = 7; job_pool jpool(JOB_POOL_SIZE); float total_uastc_psnr = 0, total_uastc_a_psnr = 0, total_uastc_rgba_psnr = 0; float total_rdo_uastc_psnr = 0, total_rdo_uastc_a_psnr = 0, total_rdo_uastc_rgba_psnr = 0; float total_uastc2_psnr = 0, total_uastc2_a_psnr = 0, total_uastc2_rgba_psnr = 0; float total_bc7_psnr = 0, total_bc7_a_psnr = 0, total_bc7_rgba_psnr = 0; float total_rdo_bc7_psnr = 0, total_rdo_bc7_a_psnr = 0, total_rdo_bc7_rgba_psnr = 0; float total_obc1_psnr = 0; float total_obc1_2_psnr = 0; float total_obc1_psnr_sq = 0; float total_obc1_2_psnr_sq = 0; float total_bc1_psnr = 0; float total_bc1_psnr_sq = 0; //float total_obc7_psnr = 0, total_obc7_rgba_psnr = 0; //float total_obc7_a_psnr = 0; //float total_oastc_psnr = 0, total_oastc_rgba_psnr = 0; float total_bc7enc_psnr = 0, total_bc7enc_rgba_psnr = 0, total_bc7enc_a_psnr = 0; //float total_oastc_a_psnr = 0; float total_etc1_psnr = 0; float total_etc1_y_psnr = 0; float total_etc1_g_psnr = 0; float total_etc2_psnr = 0, total_etc2_rgba_psnr = 0; float total_etc2_a_psnr = 0; float total_bc3_psnr = 0, total_bc3_rgba_psnr = 0; float total_bc3_a_psnr = 0; float total_eac_r11_psnr = 0; float total_eac_rg11_psnr = 0; float total_pvrtc1_rgb_psnr = 0, total_pvrtc1_rgba_psnr = 0; float total_pvrtc1_a_psnr = 0; uint32_t total_images = 0; uint32_t total_a_images = 0; uint32_t total_pvrtc1_images = 0; uint64_t overall_mode_hist[basist::TOTAL_UASTC_MODES]; memset(overall_mode_hist, 0, sizeof(overall_mode_hist)); std::mutex mode_hist_mutex; uint32_t etc1_hint_hist[32]; memset(etc1_hint_hist, 0, sizeof(etc1_hint_hist)); srand(1023); uint32_t first_image = 96; uint32_t last_image = 96; //34 if (opts.m_input_filenames.size() >= 1) { first_image = 1; last_image = 1; } const bool perceptual = false; const bool force_la = false; interval_timer otm; otm.start(); //const uint32_t flags = cPackUASTCLevelFastest;// | cPackUASTCETC1DisableFlipAndIndividual;// Slower; //const uint32_t flags = cPackUASTCLevelFaster; //const uint32_t flags = cPackUASTCLevelVerySlow; const uint32_t flags = cPackUASTCLevelDefault; uint32_t etc1_inten_hist[8] = { 0,0,0,0,0,0,0,0 }; uint32_t etc1_flip_hist[2] = { 0, 0 }; uint32_t etc1_diff_hist[2] = { 0, 0 }; double overall_total_enc_time = 0; double overall_total_bench_time = 0; double overall_total_bench2_time = 0; uint64_t overall_blocks = 0; //bc7enc_compress_block_params bc7enc_p; //bc7enc_compress_block_params_init(&bc7enc_p); //bc7enc_compress_block_params_init_linear_weights(&bc7enc_p); //bc7enc_p.m_uber_level = 3; uint64_t total_comp_size = 0; uint64_t total_raw_size = 0; uint64_t total_rdo_comp_size = 0; uint64_t total_rdo_raw_size = 0; uint64_t total_comp_blocks = 0; for (uint32_t image_index = first_image; image_index <= last_image; image_index++) { uint64_t mode_hist[basist::TOTAL_UASTC_MODES]; memset(mode_hist, 0, sizeof(mode_hist)); char buf[1024]; if (opts.m_input_filenames.size() >= 1) strcpy(buf, opts.m_input_filenames[0].c_str()); else sprintf(buf, "c:/dev/test_images/photo_png/kodim%02u.png", image_index); printf("Image: %s\n", buf); image img; if (!load_image(buf, img)) return 0; if (opts.m_input_filenames.size() == 2) { image alpha_img; if (!load_image(opts.m_input_filenames[1].c_str(), alpha_img)) return 0; printf("Alpha image: %s, %ux%u\n", opts.m_input_filenames[1].c_str(), alpha_img.get_width(), alpha_img.get_height()); for (uint32_t x = 0; x < alpha_img.get_width(); x++) for (uint32_t y = 0; y < alpha_img.get_height(); y++) { if (x < img.get_width() && y < img.get_height()) img(x, y)[3] = (uint8_t)alpha_img(x, y).get_709_luma(); } } if (force_la) { for (uint32_t x = 0; x < img.get_width(); x++) { for (uint32_t y = 0; y < img.get_height(); y++) { const color_rgba& c = img(x, y); img(x, y).set(c.r, c.r, c.r, c.g); } } } // HACK HACK //if (!img.has_alpha()) // continue; // HACK HACK //img.crop(1024, 1024); const uint32_t num_blocks_x = img.get_block_width(4); const uint32_t num_blocks_y = img.get_block_height(4); const uint32_t total_blocks = num_blocks_x * num_blocks_y; const bool img_has_alpha = img.has_alpha(); img.crop_dup_borders(num_blocks_x * 4, num_blocks_y * 4); printf("%ux%u, has alpha: %u\n", img.get_width(), img.get_height(), img_has_alpha); image uastc_img(num_blocks_x * 4, num_blocks_y * 4); image rdo_uastc_img(num_blocks_x * 4, num_blocks_y * 4); image uastc2_img(num_blocks_x * 4, num_blocks_y * 4); image opt_bc1_img(num_blocks_x * 4, num_blocks_y * 4); image opt_bc1_2_img(num_blocks_x * 4, num_blocks_y * 4); image bc1_img(num_blocks_x * 4, num_blocks_y * 4); image bc3_img(num_blocks_x * 4, num_blocks_y * 4); image eac_r11_img(num_blocks_x * 4, num_blocks_y * 4); image eac_rg11_img(num_blocks_x * 4, num_blocks_y * 4); image bc7_img(num_blocks_x * 4, num_blocks_y * 4); image rdo_bc7_img(num_blocks_x * 4, num_blocks_y * 4); image opt_bc7_img(num_blocks_x * 4, num_blocks_y * 4); image etc1_img(num_blocks_x * 4, num_blocks_y * 4); image etc1_g_img(num_blocks_x * 4, num_blocks_y * 4); image etc2_img(num_blocks_x * 4, num_blocks_y * 4); image part_img(num_blocks_x * 4, num_blocks_y * 4); image opt_astc_img(num_blocks_x * 4, num_blocks_y * 4); image bc7enc_img(num_blocks_x * 4, num_blocks_y * 4); uint32_t total_bc1_hint0s = 0; uint32_t total_bc1_hint1s = 0; uint32_t total_bc1_hint01s = 0; double total_enc_time = 0; double total_bench_time = 0; double total_bench2_time = 0; basisu::vector ublocks(total_blocks); #if 0 astc_enc_settings astc_settings; //if (img_has_alpha) GetProfile_astc_alpha_slow(&astc_settings, 4, 4); //else // GetProfile_astc_fast(&astc_settings, 4, 4); #endif #if 0 //#pragma omp parallel for for (int by = 0; by < (int)num_blocks_y; by++) { // Process 64 blocks at a time, for efficient SIMD processing. // Ideally, N >= 8 (or more) and (N % 8) == 0. const int N = 64; for (uint32_t bx = 0; bx < num_blocks_x; bx += N) { const uint32_t num_blocks_to_process = basisu::minimum(num_blocks_x - bx, N); color_rgba pixels[16 * N]; #if 0 // BC7E // Extract num_blocks_to_process 4x4 pixel blocks from the source image and put them into the pixels[] array. for (uint32_t b = 0; b < num_blocks_to_process; b++) img.extract_block_clamped(pixels + b * 16, (bx + b) * 4, by * 4, 4, 4); // Compress the blocks to BC7. // Note: If you've used Intel's ispc_texcomp, the input pixels are different. BC7E requires a pointer to an array of 16 pixels for each block. basist::bc7_block packed_blocks[N]; ispc::bc7e_compress_blocks(num_blocks_to_process, (uint64_t*)packed_blocks, reinterpret_cast(pixels), &pack_params); for (uint32_t i = 0; i < num_blocks_to_process; i++) { color_rgba decoded_block[4][4]; //detexDecompressBlockBPTC((uint8_t *)&packed_blocks[i], 0xFF, 0, (uint8_t *)&decoded_block[0][0]); unpack_block(texture_format::cBC7, &packed_blocks[i], &decoded_block[0][0]); opt_bc7_img.set_block_clipped(&decoded_block[0][0], (bx + i) * 4, by * 4, 4, 4); } #endif #if 0 // ispc_texcomp color_rgba raster_pixels[(N * 4) * 4]; const uint32_t raster_width = num_blocks_to_process * 4; const uint32_t raster_height = 4; rgba_surface surf; surf.ptr = &raster_pixels[0].r; surf.width = raster_width; surf.height = 4; surf.stride = raster_width * 4; for (uint32_t b = 0; b < num_blocks_to_process; b++) for (uint32_t y = 0; y < 4; y++) for (uint32_t x = 0; x < 4; x++) raster_pixels[y * raster_width + b * 4 + x] = pixels[b * 16 + y * 4 + x]; uint8_t astc_blocks[16 * N]; CompressBlocksASTC(&surf, astc_blocks, &astc_settings); for (uint32_t i = 0; i < num_blocks_to_process; i++) { color_rgba decoded_astc_block[4][4]; basisu_astc::astc::decompress((uint8_t*)decoded_astc_block, (uint8_t*)&astc_blocks[i * 16], false, 4, 4); opt_astc_img.set_block_clipped(&decoded_astc_block[0][0], (bx + i) * 4, by * 4, 4, 4); } #endif } } #endif const uint32_t N = 128; for (uint32_t block_index_iter = 0; block_index_iter < total_blocks; block_index_iter += N) { const uint32_t first_index = block_index_iter; const uint32_t last_index = minimum(total_blocks, block_index_iter + N); jpool.add_job([first_index, last_index, &img, num_blocks_x, num_blocks_y, &opt_bc1_img, &opt_bc1_2_img, &mode_hist, &overall_mode_hist, &uastc_img, &uastc2_img, &bc7_img, &part_img, &mode_hist_mutex, &bc1_img, &etc1_img, &etc1_g_img, &etc2_img, &etc1_hint_hist, &perceptual, &total_bc1_hint0s, &total_bc1_hint1s, &total_bc1_hint01s, &bc3_img, &total_enc_time, &eac_r11_img, &eac_rg11_img, &ublocks, &flags, &etc1_inten_hist, &etc1_flip_hist, &etc1_diff_hist, &total_bench_time, &total_bench2_time, //&bc7enc_p, &bc7enc_img] { &bc7enc_img] { BASISU_NOTE_UNUSED(num_blocks_y); BASISU_NOTE_UNUSED(perceptual); BASISU_NOTE_UNUSED(flags); for (uint32_t block_index = first_index; block_index < last_index; block_index++) { const uint32_t block_x = block_index % num_blocks_x; const uint32_t block_y = block_index / num_blocks_x; //uint32_t block_x = 170; //uint32_t block_y = 167; // HACK HACK //if ((block_x == 77) && (block_y == 54)) // printf("!"); color_rgba block[4][4]; img.extract_block_clamped(&block[0][0], block_x * 4, block_y * 4, 4, 4); uint8_t bc7_block[16]; //bc7enc_compress_block(bc7_block, block, &bc7enc_p); color_rgba decoded_bc7enc_blk[4][4]; unpack_block(texture_format::cBC7, &bc7_block, &decoded_bc7enc_blk[0][0]); bc7enc_img.set_block_clipped(&decoded_bc7enc_blk[0][0], block_x * 4, block_y * 4, 4, 4); // Pack near-optimal BC1 // stb_dxt BC1 encoder uint8_t bc1_block[8]; interval_timer btm; btm.start(); //stb_compress_dxt_block(bc1_block, (uint8_t*)&block[0][0], 0, STB_DXT_HIGHQUAL); basist::encode_bc1(bc1_block, (uint8_t*)&block[0][0], 0);// basist::cEncodeBC1HighQuality); double total_b_time = btm.get_elapsed_secs(); { std::lock_guard lck(mode_hist_mutex); total_bench_time += total_b_time; } color_rgba block_bc1[4][4]; unpack_block(texture_format::cBC1, bc1_block, &block_bc1[0][0]); opt_bc1_img.set_block_clipped(&block_bc1[0][0], block_x * 4, block_y * 4, 4, 4); //uint64_t e1 = 0; //for (uint32_t i = 0; i < 16; i++) // e1 += color_distance(((color_rgba*)block_bc1)[i], ((color_rgba*)block)[i], false); // My BC1 encoder uint8_t bc1_block_2[8]; color_rgba block_bc1_2[4][4]; btm.start(); basist::encode_bc1_alt(bc1_block_2, (uint8_t*)&block[0][0], basist::cEncodeBC1HighQuality); double total_b2_time = btm.get_elapsed_secs(); { std::lock_guard lck(mode_hist_mutex); total_bench2_time += total_b2_time; } unpack_block(texture_format::cBC1, bc1_block_2, &block_bc1_2[0][0]); //uint64_t e2 = 0; //for (uint32_t i = 0; i < 16; i++) // e2 += color_distance(((color_rgba *)block_bc1_2)[i], ((color_rgba*)block)[i], false); opt_bc1_2_img.set_block_clipped(&block_bc1_2[0][0], block_x * 4, block_y * 4, 4, 4); // Encode to UASTC basist::uastc_block encoded_uastc_blk; interval_timer tm; tm.start(); encode_uastc(&block[0][0].r, encoded_uastc_blk, flags); double total_time = tm.get_elapsed_secs(); { std::lock_guard lck(mode_hist_mutex); total_enc_time += total_time; } ublocks[block_x + block_y * num_blocks_x] = encoded_uastc_blk; #if 0 for (uint32_t i = 0; i < 16; i++) printf("0x%X,", encoded_uastc_blk.m_bytes[i]); printf("\n"); #endif // Unpack UASTC basist::unpacked_uastc_block unpacked_uastc_blk; unpack_uastc(encoded_uastc_blk, unpacked_uastc_blk, false); color_rgba unpacked_uastc_block_pixels[4][4]; bool success = basist::unpack_uastc(unpacked_uastc_blk, (basist::color32*) & unpacked_uastc_block_pixels[0][0], false); (void)success; assert(success); uastc_img.set_block_clipped(&unpacked_uastc_block_pixels[0][0], block_x * 4, block_y * 4, 4, 4); const uint32_t best_mode = unpacked_uastc_blk.m_mode; { std::lock_guard lck(mode_hist_mutex); assert(best_mode < basist::TOTAL_UASTC_MODES); if (best_mode < basist::TOTAL_UASTC_MODES) { mode_hist[best_mode]++; overall_mode_hist[best_mode]++; } if (basist::g_uastc_mode_has_etc1_bias[best_mode]) etc1_hint_hist[unpacked_uastc_blk.m_etc1_bias]++; total_bc1_hint0s += unpacked_uastc_blk.m_bc1_hint0; total_bc1_hint1s += unpacked_uastc_blk.m_bc1_hint1; total_bc1_hint01s += (unpacked_uastc_blk.m_bc1_hint0 || unpacked_uastc_blk.m_bc1_hint1); etc1_inten_hist[unpacked_uastc_blk.m_etc1_inten0]++; etc1_inten_hist[unpacked_uastc_blk.m_etc1_inten1]++; etc1_flip_hist[unpacked_uastc_blk.m_etc1_flip]++; etc1_diff_hist[unpacked_uastc_blk.m_etc1_diff]++; } // Transcode to BC1 color_rgba tblock_bc1[4][4]; uint8_t tbc1_block[8]; transcode_uastc_to_bc1(encoded_uastc_blk, tbc1_block, false); unpack_block(texture_format::cBC1, tbc1_block, &tblock_bc1[0][0]); bc1_img.set_block_clipped(&tblock_bc1[0][0], block_x * 4, block_y * 4, 4, 4); // Transcode to BC7 basist::bc7_optimization_results best_bc7_results; transcode_uastc_to_bc7(unpacked_uastc_blk, best_bc7_results); { basist::bc7_block bc7_data; encode_bc7_block(&bc7_data, &best_bc7_results); color_rgba decoded_bc7_blk[4][4]; unpack_block(texture_format::cBC7, &bc7_data, &decoded_bc7_blk[0][0]); bc7_img.set_block_clipped(&decoded_bc7_blk[0][0], block_x * 4, block_y * 4, 4, 4); // Compute partition visualization image for (uint32_t y = 0; y < 4; y++) { for (uint32_t x = 0; x < 4; x++) { uint32_t part = 0; switch (best_bc7_results.m_mode) { case 1: case 3: case 7: part = basist::g_bc7_partition2[best_bc7_results.m_partition * 16 + x + y * 4]; break; case 0: case 2: part = basist::g_bc7_partition3[best_bc7_results.m_partition * 16 + x + y * 4]; break; } color_rgba c(0, 255, 0, 255); if (part == 1) c.set(255, 0, 0, 255); else if (part == 2) c.set(0, 0, 255, 255); part_img.set_clipped(block_x * 4 + x, block_y * 4 + y, c); } } } bool high_quality = false; // Transcode UASTC->BC3 uint8_t ublock_bc3[16]; transcode_uastc_to_bc3(encoded_uastc_blk, ublock_bc3, high_quality); color_rgba ublock_bc3_unpacked[4][4]; unpack_block(texture_format::cBC3, &ublock_bc3, &ublock_bc3_unpacked[0][0]); bc3_img.set_block_clipped(&ublock_bc3_unpacked[0][0], block_x * 4, block_y * 4, 4, 4); // Transcode UASTC->R11 uint8_t ublock_eac_r11[8]; transcode_uastc_to_etc2_eac_r11(encoded_uastc_blk, ublock_eac_r11, high_quality, 0); color_rgba ublock_eac_r11_unpacked[4][4]; for (uint32_t y = 0; y < 4; y++) for (uint32_t x = 0; x < 4; x++) ublock_eac_r11_unpacked[y][x].set(0, 0, 0, 255); unpack_block(texture_format::cETC2_R11_EAC, &ublock_eac_r11, &ublock_eac_r11_unpacked[0][0]); eac_r11_img.set_block_clipped(&ublock_eac_r11_unpacked[0][0], block_x * 4, block_y * 4, 4, 4); // Transcode UASTC->RG11 uint8_t ublock_eac_rg11[16]; transcode_uastc_to_etc2_eac_rg11(encoded_uastc_blk, ublock_eac_rg11, high_quality, 0, 1); color_rgba ublock_eac_rg11_unpacked[4][4]; for (uint32_t y = 0; y < 4; y++) for (uint32_t x = 0; x < 4; x++) ublock_eac_rg11_unpacked[y][x].set(0, 0, 0, 255); unpack_block(texture_format::cETC2_RG11_EAC, &ublock_eac_rg11, &ublock_eac_rg11_unpacked[0][0]); eac_rg11_img.set_block_clipped(&ublock_eac_rg11_unpacked[0][0], block_x * 4, block_y * 4, 4, 4); // ETC1 etc_block unpacked_etc1; transcode_uastc_to_etc1(encoded_uastc_blk, &unpacked_etc1); color_rgba unpacked_etc1_block[16]; unpack_etc1(unpacked_etc1, unpacked_etc1_block); etc1_img.set_block_clipped(unpacked_etc1_block, block_x * 4, block_y * 4, 4, 4); // ETC1 Y etc_block unpacked_etc1_g; transcode_uastc_to_etc1(encoded_uastc_blk, &unpacked_etc1_g, 1); color_rgba unpacked_etc1_g_block[16]; unpack_etc1(unpacked_etc1_g, unpacked_etc1_g_block); etc1_g_img.set_block_clipped(unpacked_etc1_g_block, block_x * 4, block_y * 4, 4, 4); // ETC2 etc2_rgba_block unpacked_etc2; transcode_uastc_to_etc2_rgba(encoded_uastc_blk, &unpacked_etc2); color_rgba unpacked_etc2_block[16]; unpack_block(texture_format::cETC2_RGBA, &unpacked_etc2, unpacked_etc2_block); etc2_img.set_block_clipped(unpacked_etc2_block, block_x * 4, block_y * 4, 4, 4); // UASTC->ASTC uint32_t tastc_data[4]; transcode_uastc_to_astc(encoded_uastc_blk, tastc_data); color_rgba decoded_tastc_block[4][4]; //basisu_astc::astc::decompress((uint8_t*)decoded_tastc_block, (uint8_t*)&tastc_data, false, 4, 4); uastc2_img.set_block_clipped(&decoded_tastc_block[0][0], block_x * 4, block_y * 4, 4, 4); for (uint32_t y = 0; y < 4; y++) { for (uint32_t x = 0; x < 4; x++) { if (decoded_tastc_block[y][x] != unpacked_uastc_block_pixels[y][x]) { printf("UASTC!=ASTC!\n"); } } } } // block_index }); } // block_index_iter jpool.wait_for_all(); { size_t comp_size = 0; void* pComp_data = tdefl_compress_mem_to_heap(&ublocks[0], ublocks.size() * 16, &comp_size, TDEFL_MAX_PROBES_MASK);// TDEFL_DEFAULT_MAX_PROBES); size_t decomp_size; void* pDecomp_data = tinfl_decompress_mem_to_heap(pComp_data, comp_size, &decomp_size, 0); if ((decomp_size != ublocks.size() * 16) || (memcmp(pDecomp_data, &ublocks[0], decomp_size) != 0)) { printf("Compression or decompression failed!\n"); exit(1); } mz_free(pComp_data); mz_free(pDecomp_data); printf("Pre-RDO UASTC size: %u, compressed size: %u, %3.2f bits/texel\n", (uint32_t)ublocks.size() * 16, (uint32_t)comp_size, comp_size * 8.0f / img.get_total_pixels()); total_comp_size += comp_size; total_raw_size += ublocks.size() * 16; } basisu::vector orig_block_pixels(ublocks.size() * 16); for (uint32_t block_y = 0; block_y < num_blocks_y; block_y++) for (uint32_t block_x = 0; block_x < num_blocks_x; block_x++) img.extract_block_clamped(&orig_block_pixels[(block_x + block_y * num_blocks_x) * 16], block_x * 4, block_y * 4, 4, 4); // HACK HACK const uint32_t max_rdo_jobs = 4; char rdo_fname[256]; FILE* pFile = nullptr; for (uint32_t try_index = 0; try_index < 100; try_index++) { sprintf(rdo_fname, "rdo_%02u_%u.csv", image_index, try_index); pFile = fopen(rdo_fname, "rb"); if (pFile) { fclose(pFile); continue; } pFile = fopen(rdo_fname, "w"); if (!pFile) printf("Cannot open CSV file %s\n", rdo_fname); else { printf("Opened CSV file %s\n", rdo_fname); break; } } for (float q = .2f; q <= 10.0f; q += (q >= 1.0f ? .5f : .1f)) { printf("Q: %f\n", q); uastc_rdo_params p; p.m_lambda = q; p.m_max_allowed_rms_increase_ratio = 10.0f; p.m_skip_block_rms_thresh = 8.0f; bool rdo_status = uastc_rdo((uint32_t)ublocks.size(), &ublocks[0], &orig_block_pixels[0], p, flags, &jpool, max_rdo_jobs); if (!rdo_status) { printf("uastc_rdo() failed!\n"); return false; } for (uint32_t block_y = 0; block_y < num_blocks_y; block_y++) { for (uint32_t block_x = 0; block_x < num_blocks_x; block_x++) { const basist::uastc_block& blk = ublocks[block_x + block_y * num_blocks_x]; color_rgba unpacked_block[4][4]; if (!basist::unpack_uastc(blk, (basist::color32*)unpacked_block, false)) { printf("Block unpack failed!\n"); exit(1); } rdo_uastc_img.set_block_clipped(&unpacked_block[0][0], block_x * 4, block_y * 4, 4, 4); basist::bc7_optimization_results best_bc7_results; transcode_uastc_to_bc7(blk, best_bc7_results); basist::bc7_block bc7_data; encode_bc7_block(&bc7_data, &best_bc7_results); color_rgba decoded_bc7_blk[4][4]; unpack_block(texture_format::cBC7, &bc7_data, &decoded_bc7_blk[0][0]); rdo_bc7_img.set_block_clipped(&decoded_bc7_blk[0][0], block_x * 4, block_y * 4, 4, 4); } } image_metrics em; em.calc(img, rdo_uastc_img, 0, 3); em.print("RDOUASTC RGB "); size_t comp_size = 0; void* pComp_data = tdefl_compress_mem_to_heap(&ublocks[0], ublocks.size() * 16, &comp_size, TDEFL_MAX_PROBES_MASK);// TDEFL_DEFAULT_MAX_PROBES); size_t decomp_size; void* pDecomp_data = tinfl_decompress_mem_to_heap(pComp_data, comp_size, &decomp_size, 0); if ((decomp_size != ublocks.size() * 16) || (memcmp(pDecomp_data, &ublocks[0], decomp_size) != 0)) { printf("Compression or decompression failed!\n"); exit(1); } mz_free(pComp_data); mz_free(pDecomp_data); printf("RDO UASTC size: %u, compressed size: %u, %3.2f bits/texel\n", (uint32_t)ublocks.size() * 16, (uint32_t)comp_size, comp_size * 8.0f / img.get_total_pixels()); if (pFile) fprintf(pFile, "%f, %f, %f\n", q, comp_size * 8.0f / img.get_total_pixels(), em.m_psnr); } if (pFile) fclose(pFile); { size_t comp_size = 0; void* pComp_data = tdefl_compress_mem_to_heap(&ublocks[0], ublocks.size() * 16, &comp_size, TDEFL_MAX_PROBES_MASK);// TDEFL_DEFAULT_MAX_PROBES); size_t decomp_size; void* pDecomp_data = tinfl_decompress_mem_to_heap(pComp_data, comp_size, &decomp_size, 0); if ((decomp_size != ublocks.size() * 16) || (memcmp(pDecomp_data, &ublocks[0], decomp_size) != 0)) { printf("Compression or decompression failed!\n"); exit(1); } mz_free(pComp_data); mz_free(pDecomp_data); printf("RDO UASTC size: %u, compressed size: %u, %3.2f bits/texel\n", (uint32_t)ublocks.size() * 16, (uint32_t)comp_size, comp_size * 8.0f / img.get_total_pixels()); total_rdo_comp_size += comp_size; total_rdo_raw_size += ublocks.size() * 16; total_comp_blocks += ublocks.size(); } printf("Total blocks: %u\n", total_blocks); printf("Total BC1 hint 0's: %u %3.1f%%\n", total_bc1_hint0s, total_bc1_hint0s * 100.0f / total_blocks); printf("Total BC1 hint 1's: %u %3.1f%%\n", total_bc1_hint1s, total_bc1_hint1s * 100.0f / total_blocks); printf("Total BC1 hint 01's: %u %3.1f%%\n", total_bc1_hint01s, total_bc1_hint01s * 100.0f / total_blocks); printf("Total enc time per block: %f us\n", total_enc_time / total_blocks * 1000000.0f); printf("Total bench time per block: %f us\n", total_bench_time / total_blocks * 1000000.0f); printf("Total bench2 time per block: %f us\n", total_bench2_time / total_blocks * 1000000.0f); overall_total_enc_time += total_enc_time; overall_total_bench_time += total_bench_time; overall_total_bench2_time += total_bench2_time; overall_blocks += total_blocks; printf("ETC1 inten hist: %u %u %u %u %u %u %u %u\n", etc1_inten_hist[0], etc1_inten_hist[1], etc1_inten_hist[2], etc1_inten_hist[3], etc1_inten_hist[4], etc1_inten_hist[5], etc1_inten_hist[6], etc1_inten_hist[7]); printf("ETC1 flip hist: %u %u\n", etc1_flip_hist[0], etc1_flip_hist[1]); printf("ETC1 diff hist: %u %u\n", etc1_diff_hist[0], etc1_diff_hist[1]); printf("UASTC mode histogram:\n"); uint64_t total_hist = 0; for (uint32_t i = 0; i < basist::TOTAL_UASTC_MODES; i++) total_hist += mode_hist[i]; for (uint32_t i = 0; i < basist::TOTAL_UASTC_MODES; i++) printf("%u: %u %3.2f%%\n", i, (uint32_t)mode_hist[i], mode_hist[i] * 100.0f / total_hist); char fn[256]; #if 0 for (uint32_t y = 0; y < img.get_height(); y++) for (uint32_t x = 0; x < img.get_width(); x++) { //static inline uint8_t to_5(uint32_t v) { ; } color_rgba &c = img(x, y); for (uint32_t i = 0; i < 3; i++) { const uint32_t limit = (i == 1) ? 63 : 31; uint32_t v = c[i]; v = v * limit + 128; v = (uint8_t)((v + (v >> 8)) >> 8); v = (v * 255 + (limit / 2)) / limit; c[i] = (uint8_t)v; } } #endif sprintf(fn, "orig_%02u.png", image_index); save_png(fn, img, cImageSaveIgnoreAlpha); sprintf(fn, "orig_a_%02u.png", image_index); save_png(fn, img, cImageSaveGrayscale, 3); sprintf(fn, "unpacked_uastc_%02u.png", image_index); save_png(fn, uastc_img, cImageSaveIgnoreAlpha); sprintf(fn, "unpacked_uastc_a_%02u.png", image_index); save_png(fn, uastc_img, cImageSaveGrayscale, 3); sprintf(fn, "unpacked_rdo_uastc_%02u.png", image_index); save_png(fn, rdo_uastc_img, cImageSaveIgnoreAlpha); sprintf(fn, "unpacked_rdo_uastc_a_%02u.png", image_index); save_png(fn, rdo_uastc_img, cImageSaveGrayscale, 3); sprintf(fn, "unpacked_uastc2_%02u.png", image_index); save_png(fn, uastc2_img, cImageSaveIgnoreAlpha); sprintf(fn, "unpacked_bc7_%02u.png", image_index); save_png(fn, bc7_img, cImageSaveIgnoreAlpha); sprintf(fn, "unpacked_bc7_a_%02u.png", image_index); save_png(fn, bc7_img, cImageSaveGrayscale, 3); sprintf(fn, "unpacked_rdo_bc7_%02u.png", image_index); save_png(fn, rdo_bc7_img, cImageSaveIgnoreAlpha); sprintf(fn, "unpacked_rdo_bc7_a_%02u.png", image_index); save_png(fn, rdo_bc7_img, cImageSaveGrayscale, 3); sprintf(fn, "unpacked_opt_bc7_%02u.png", image_index); save_png(fn, opt_bc7_img, cImageSaveIgnoreAlpha); sprintf(fn, "unpacked_opt_bc7_a_%02u.png", image_index); save_png(fn, opt_bc7_img, cImageSaveGrayscale, 3); sprintf(fn, "unpacked_opt_astc_%02u.png", image_index); save_png(fn, opt_astc_img, cImageSaveIgnoreAlpha); sprintf(fn, "unpacked_opt_astc_a_%02u.png", image_index); save_png(fn, opt_astc_img, cImageSaveGrayscale, 3); sprintf(fn, "unpacked_bc7enc_%02u.png", image_index); save_png(fn, bc7enc_img, cImageSaveIgnoreAlpha); sprintf(fn, "unpacked_bc7enc_a_%02u.png", image_index); save_png(fn, bc7enc_img, cImageSaveGrayscale, 3); sprintf(fn, "unpacked_opt_bc1_%02u.png", image_index); save_png(fn, opt_bc1_img, cImageSaveIgnoreAlpha); sprintf(fn, "unpacked_opt_bc1_2_%02u.png", image_index); save_png(fn, opt_bc1_2_img, cImageSaveIgnoreAlpha); sprintf(fn, "unpacked_tbc1_%02u.png", image_index); save_png(fn, bc1_img, cImageSaveIgnoreAlpha); sprintf(fn, "unpacked_bc3_%02u.png", image_index); save_png(fn, bc3_img, cImageSaveIgnoreAlpha); sprintf(fn, "unpacked_eac_r11_%02u.png", image_index); save_png(fn, eac_r11_img, cImageSaveIgnoreAlpha); sprintf(fn, "unpacked_eac_rg11_%02u.png", image_index); save_png(fn, eac_rg11_img, cImageSaveIgnoreAlpha); sprintf(fn, "unpacked_bc3_a_%02u.png", image_index); save_png(fn, bc3_img, cImageSaveGrayscale, 3); sprintf(fn, "part_vis_%02u.png", image_index); save_png(fn, part_img, cImageSaveIgnoreAlpha); sprintf(fn, "unpacked_etc1_%02u.png", image_index); save_png(fn, etc1_img, cImageSaveIgnoreAlpha); sprintf(fn, "unpacked_etc1_g_%02u.png", image_index); save_png(fn, etc1_g_img, cImageSaveIgnoreAlpha); sprintf(fn, "unpacked_etc2_%02u.png", image_index); save_png(fn, etc2_img, cImageSaveIgnoreAlpha); sprintf(fn, "unpacked_etc2_a_%02u.png", image_index); save_png(fn, etc2_img, cImageSaveGrayscale, 3); image_metrics em; // UASTC em.calc(img, uastc_img, 0, 3); em.print("UASTC RGB "); total_uastc_psnr += basisu::minimum(99.0f, em.m_psnr); em.calc(img, uastc_img, 3, 1); em.print("UASTC A "); if (img_has_alpha) total_uastc_a_psnr += basisu::minimum(99.0f, em.m_psnr); em.calc(img, uastc_img, 0, 4); em.print("UASTC RGBA "); total_uastc_rgba_psnr += basisu::minimum(99.0f, em.m_psnr); // RDO UASTC em.calc(img, rdo_uastc_img, 0, 3); em.print("RDOUASTC RGB "); total_rdo_uastc_psnr += basisu::minimum(99.0f, em.m_psnr); em.calc(img, rdo_uastc_img, 3, 1); em.print("RDOUASTC A "); if (img_has_alpha) total_rdo_uastc_a_psnr += basisu::minimum(99.0f, em.m_psnr); em.calc(img, rdo_uastc_img, 0, 4); em.print("RDOUASTC RGBA "); total_rdo_uastc_rgba_psnr += basisu::minimum(99.0f, em.m_psnr); // UASTC2 em.calc(img, uastc2_img, 0, 3); em.print("UASTC2 RGB "); total_uastc2_psnr += basisu::minimum(99.0f, em.m_psnr); em.calc(img, uastc2_img, 3, 1); em.print("UASTC2 A "); if (img_has_alpha) total_uastc2_a_psnr += basisu::minimum(99.0f, em.m_psnr); em.calc(img, uastc2_img, 0, 4); em.print("UASTC2 RGBA "); total_uastc2_rgba_psnr += basisu::minimum(99.0f, em.m_psnr); // BC7 em.calc(img, bc7_img, 0, 3); em.print("BC7 RGB "); total_bc7_psnr += basisu::minimum(99.0f, em.m_psnr); em.calc(img, bc7_img, 3, 1); em.print("BC7 A "); if (img_has_alpha) total_bc7_a_psnr += basisu::minimum(99.0f, em.m_psnr); em.calc(img, bc7_img, 0, 4); em.print("BC7 RGBA "); total_bc7_rgba_psnr += basisu::minimum(99.0f, em.m_psnr); // RDO BC7 em.calc(img, rdo_bc7_img, 0, 3); em.print("RDOBC7 RGB "); total_rdo_bc7_psnr += basisu::minimum(99.0f, em.m_psnr); em.calc(img, rdo_bc7_img, 3, 1); em.print("RDOBC7 A "); if (img_has_alpha) total_rdo_bc7_a_psnr += basisu::minimum(99.0f, em.m_psnr); em.calc(img, rdo_bc7_img, 0, 4); em.print("RDOBC7 RGBA "); total_rdo_bc7_rgba_psnr += basisu::minimum(99.0f, em.m_psnr); #if 0 // OBC7 em.calc(img, opt_bc7_img, 0, 3); em.print("OBC7 RGB "); total_obc7_psnr += basisu::minimum(99.0f, em.m_psnr); em.calc(img, opt_bc7_img, 3, 1); em.print("OBC7 A "); if (img_has_alpha) total_obc7_a_psnr += basisu::minimum(99.0f, em.m_psnr); em.calc(img, opt_bc7_img, 0, 4); em.print("OBC7 RGBA "); total_obc7_rgba_psnr += basisu::minimum(99.0f, em.m_psnr); // OASTC em.calc(img, opt_astc_img, 0, 3); em.print("OASTC RGB "); total_oastc_psnr += basisu::minimum(99.0f, em.m_psnr); em.calc(img, opt_astc_img, 3, 1); em.print("OASTC A "); if (img_has_alpha) total_oastc_a_psnr += basisu::minimum(99.0f, em.m_psnr); em.calc(img, opt_astc_img, 0, 4); em.print("OASTC RGBA "); total_oastc_rgba_psnr += basisu::minimum(99.0f, em.m_psnr); #endif // bc7enc em.calc(img, bc7enc_img, 0, 3); em.print("BC7ENC RGB "); total_bc7enc_psnr += basisu::minimum(99.0f, em.m_psnr); em.calc(img, bc7enc_img, 3, 1); em.print("BC7ENC A "); if (img_has_alpha) total_bc7enc_a_psnr += basisu::minimum(99.0f, em.m_psnr); em.calc(img, bc7enc_img, 0, 4); em.print("BC7ENC RGBA "); total_bc7enc_rgba_psnr += basisu::minimum(99.0f, em.m_psnr); #if 1 // OBC1 em.calc(img, opt_bc1_img, 0, 3); em.print("OBC1 RGB "); total_obc1_psnr += basisu::minimum(99.0f, em.m_psnr); total_obc1_psnr_sq += basisu::minimum(99.0f, em.m_psnr) * basisu::minimum(99.0f, em.m_psnr); #endif em.calc(img, opt_bc1_2_img, 0, 3); em.print("OBC1 2 RGB "); total_obc1_2_psnr += basisu::minimum(99.0f, em.m_psnr); total_obc1_2_psnr_sq += basisu::minimum(99.0f, em.m_psnr) * basisu::minimum(99.0f, em.m_psnr); em.calc(img, bc1_img, 0, 3); em.print("BC1 RGB "); total_bc1_psnr += basisu::minimum(99.0f, em.m_psnr); total_bc1_psnr_sq += basisu::minimum(99.0f, em.m_psnr) * basisu::minimum(99.0f, em.m_psnr); // ETC1 em.calc(img, etc1_img, 0, 3); em.print("ETC1 RGB "); total_etc1_psnr += basisu::minimum(99.0f, em.m_psnr); em.calc(img, etc1_img, 0, 0); em.print("ETC1 Y "); total_etc1_y_psnr += basisu::minimum(99.0f, em.m_psnr); // ETC1 em.calc(img, etc1_g_img, 1, 1); em.print("ETC1 G "); total_etc1_g_psnr += basisu::minimum(99.0f, em.m_psnr); // ETC2 em.calc(img, etc2_img, 0, 3); em.print("ETC2 RGB "); total_etc2_psnr += basisu::minimum(99.0f, em.m_psnr); em.calc(img, etc2_img, 3, 1); em.print("ETC2 A "); if (img_has_alpha) total_etc2_a_psnr += basisu::minimum(99.0f, em.m_psnr); em.calc(img, etc2_img, 0, 4); em.print("ETC2 RGBA "); total_etc2_rgba_psnr += basisu::minimum(99.0f, em.m_psnr); // BC3 em.calc(img, bc3_img, 0, 3); em.print("BC3 RGB "); total_bc3_psnr += basisu::minimum(99.0f, em.m_psnr); em.calc(img, bc3_img, 3, 1); em.print("BC3 A "); if (img_has_alpha) total_bc3_a_psnr += basisu::minimum(99.0f, em.m_psnr); em.calc(img, bc3_img, 0, 4); em.print("BC3 RGBA "); total_bc3_rgba_psnr += basisu::minimum(99.0f, em.m_psnr); // EAC R11 em.calc(img, eac_r11_img, 0, 1); em.print("EAC R11 "); total_eac_r11_psnr += basisu::minimum(99.0f, em.m_psnr); // EAC RG11 em.calc(img, eac_rg11_img, 0, 2); em.print("EAC RG11 "); total_eac_rg11_psnr += basisu::minimum(99.0f, em.m_psnr); const uint32_t width = num_blocks_x * 4; const uint32_t height = num_blocks_y * 4; if (is_pow2(width) && is_pow2(height)) { pvrtc4_image pi(width, height); transcode_uastc_to_pvrtc1_4_rgba(&ublocks[0], pi.get_blocks().get_ptr(), num_blocks_x, num_blocks_y, false); pi.deswizzle(); //pi.map_all_pixels(img, perceptual, false); image pi_unpacked; pi.unpack_all_pixels(pi_unpacked); #if 0 sprintf(fn, "unpacked_pvrtc1_rgb_before_%02u.png", image_index); save_png(fn, pi_unpacked, cImageSaveIgnoreAlpha); em.calc(img, pi_unpacked, 0, 3); em.print("PVRTC1 RGB Before "); for (uint32_t pass = 0; pass < 1; pass++) { for (uint32_t by = 0; by < num_blocks_y; by++) { for (uint32_t bx = 0; bx < num_blocks_x; bx++) { pi.local_endpoint_optimization_opaque(bx, by, img, perceptual, false); } } } //pi.map_all_pixels(img, perceptual, false); pi.unpack_all_pixels(pi_unpacked); #endif sprintf(fn, "unpacked_pvrtc1_%02u.png", image_index); save_png(fn, pi_unpacked, cImageSaveIgnoreAlpha); sprintf(fn, "unpacked_pvrtc1_a_%02u.png", image_index); save_png(fn, pi_unpacked, cImageSaveGrayscale, 3); em.calc(img, pi_unpacked, 0, 3); em.print("PVRTC1 After RGB "); total_pvrtc1_rgb_psnr += basisu::minimum(99.0f, em.m_psnr); em.calc(img, pi_unpacked, 3, 1); em.print("PVRTC1 After A "); total_pvrtc1_a_psnr += basisu::minimum(99.0f, em.m_psnr); em.calc(img, pi_unpacked, 0, 4); em.print("PVRTC1 After RGBA "); total_pvrtc1_rgba_psnr += basisu::minimum(99.0f, em.m_psnr); total_pvrtc1_images++; } printf("ETC1 hint histogram:\n"); for (uint32_t i = 0; i < 32; i++) printf("%u ", etc1_hint_hist[i]); printf("\n"); total_images++; if (img_has_alpha) total_a_images++; } // image_index printf("Total time: %f secs\n", otm.get_elapsed_secs()); printf("Total Non-RDO UASTC size: %llu, compressed size: %llu, %3.2f bits/texel\n", (unsigned long long)total_raw_size, (unsigned long long)total_comp_size, total_comp_size * 8.0f / (total_comp_blocks * 16)); printf("Total RDO UASTC size: %llu, compressed size: %llu, %3.2f bits/texel\n", (unsigned long long)total_rdo_raw_size, (unsigned long long)total_rdo_comp_size, total_rdo_comp_size * 8.0f / (total_comp_blocks * 16)); printf("Overall enc time per block: %f us\n", overall_total_enc_time / overall_blocks * 1000000.0f); printf("Overall bench time per block: %f us\n", overall_total_bench_time / overall_blocks * 1000000.0f); printf("Overall bench2 time per block: %f us\n", overall_total_bench2_time / overall_blocks * 1000000.0f); printf("Overall ASTC mode histogram:\n"); uint64_t total_hist = 0; for (uint32_t i = 0; i < basist::TOTAL_UASTC_MODES; i++) total_hist += overall_mode_hist[i]; for (uint32_t i = 0; i < basist::TOTAL_UASTC_MODES; i++) printf("%u: %u %3.2f%%\n", i, (uint32_t)overall_mode_hist[i], overall_mode_hist[i] * 100.0f / total_hist); printf("Total images: %u, total images with alpha: %u, total PVRTC1 images: %u\n", total_images, total_a_images, total_pvrtc1_images); if (!total_a_images) total_a_images = 1; printf("Avg UASTC RGB PSNR: %f, A PSNR: %f, RGBA PSNR: %f\n", total_uastc_psnr / total_images, total_uastc_a_psnr / total_a_images, total_uastc_rgba_psnr / total_images); printf("Avg UASTC2 RGB PSNR: %f, A PSNR: %f, RGBA PSNR: %f\n", total_uastc2_psnr / total_images, total_uastc2_a_psnr / total_a_images, total_uastc2_rgba_psnr / total_images); printf("Avg RDO UASTC RGB PSNR: %f, A PSNR: %f, RGBA PSNR: %f\n", total_rdo_uastc_psnr / total_images, total_rdo_uastc_a_psnr / total_a_images, total_rdo_uastc_rgba_psnr / total_images); printf("Avg BC7 RGB PSNR: %f, A PSNR: %f, RGBA PSNR: %f\n", total_bc7_psnr / total_images, total_bc7_a_psnr / total_a_images, total_bc7_rgba_psnr / total_images); printf("Avg RDO BC7 RGB PSNR: %f, A PSNR: %f, RGBA PSNR: %f\n", total_rdo_bc7_psnr / total_images, total_rdo_bc7_a_psnr / total_a_images, total_rdo_bc7_rgba_psnr / total_images); //printf("Avg Opt BC7 RGB PSNR: %f, A PSNR: %f, RGBA PSNR: %f\n", total_obc7_psnr / total_images, total_obc7_a_psnr / total_a_images, total_obc7_rgba_psnr / total_images); //printf("Avg Opt ASTC RGB PSNR: %f, A PSNR: %f, RGBA PSNR: %f\n", total_oastc_psnr / total_images, total_oastc_a_psnr / total_a_images, total_oastc_rgba_psnr / total_images); printf("Avg BC7ENC RGB PSNR: %f, A PSNR: %f, RGBA PSNR: %f\n", total_bc7enc_psnr / total_images, total_bc7enc_a_psnr / total_a_images, total_bc7enc_rgba_psnr / total_images); printf("Avg Opt BC1 PSNR: %f, std dev: %f\n", total_obc1_psnr / total_images, sqrtf(basisu::maximum(0.0f, (total_obc1_psnr_sq / total_images) - (total_obc1_psnr / total_images) * (total_obc1_psnr / total_images)))); printf("Avg Opt BC1 2 PSNR: %f, std dev: %f\n", total_obc1_2_psnr / total_images, sqrtf(basisu::maximum(0.0f, (total_obc1_2_psnr_sq / total_images) - (total_obc1_2_psnr / total_images) * (total_obc1_2_psnr / total_images)))); printf("Avg BC1 PSNR: %f, std dev: %f\n", total_bc1_psnr / total_images, sqrtf(basisu::maximum(0.0f, (total_bc1_psnr_sq / total_images) - (total_bc1_psnr / total_images) * (total_bc1_psnr / total_images)))); printf("Avg ETC1 RGB PSNR: %f\n", total_etc1_psnr / total_images); printf("Avg ETC1 Y PSNR: %f\n", total_etc1_y_psnr / total_images); printf("Avg ETC1 G PSNR: %f\n", total_etc1_g_psnr / total_images); printf("Avg ETC2 RGB PSNR: %f\n", total_etc2_psnr / total_images); printf("Avg ETC2 A PSNR: %f\n", total_etc2_a_psnr / total_a_images); printf("Avg ETC2 RGBA PSNR: %f\n", total_etc2_rgba_psnr / total_images); printf("Avg BC3 RGB PSNR: %f\n", total_bc3_psnr / total_images); printf("Avg BC3 A PSNR: %f\n", total_bc3_a_psnr / total_a_images); printf("Avg BC3 RGBA PSNR: %f\n", total_bc3_rgba_psnr / total_images); printf("Avg EAC R11 PSNR: %f\n", total_eac_r11_psnr / total_images); printf("Avg EAC RG11 PSNR: %f\n", total_eac_rg11_psnr / total_images); if (total_pvrtc1_images) { printf("Avg PVRTC1 RGB PSNR: %f\n", total_pvrtc1_rgb_psnr / total_pvrtc1_images); printf("Avg PVRTC1 A PSNR: %f\n", total_pvrtc1_a_psnr / total_pvrtc1_images); printf("Avg PVRTC1 RGBA PSNR: %f\n", total_pvrtc1_rgba_psnr / total_pvrtc1_images); } return true; } static uint32_t compute_miniz_compressed_size(const char* pFilename, uint32_t &orig_size) { orig_size = 0; uint8_vec buf; if (!read_file_to_vec(pFilename, buf)) return 0; if (!buf.size()) return 0; orig_size = buf.size(); size_t comp_size = 0; void* pComp_data = tdefl_compress_mem_to_heap(&buf[0], buf.size(), &comp_size, TDEFL_MAX_PROBES_MASK);// TDEFL_DEFAULT_MAX_PROBES); mz_free(pComp_data); return (uint32_t)comp_size; } static bool compsize_mode(command_line_params& opts) { if (opts.m_input_filenames.size() != 1) { error_printf("Must specify a filename using -file\n"); return false; } uint32_t orig_size; uint32_t comp_size = compute_miniz_compressed_size(opts.m_input_filenames[0].c_str(), orig_size); printf("Original file size: %u bytes\n", orig_size); printf("miniz compressed size: %u bytes\n", comp_size); return true; } const struct test_file { const char* m_pFilename; uint32_t m_etc1s_size; float m_etc1s_psnr; float m_uastc_psnr; uint32_t m_etc1s_128_size; float m_etc1s_128_psnr; } g_test_files[] = { { "black_1x1.png", 189, 100.0f, 100.0f, 189, 100.0f }, { "kodim01.png", 30993, 27.40f, 44.14f, 58354, 30.356064f }, { "kodim02.png", 28529, 32.20f, 41.06f, 51411, 34.713940f }, { "kodim03.png", 23411, 32.57f, 44.87f, 49282, 36.709675f }, { "kodim04.png", 28256, 31.76f, 43.02f, 57003, 34.864861f }, { "kodim05.png", 32646, 25.94f, 40.28f, 65731, 29.935091f }, { "kodim06.png", 27336, 28.66f, 44.57f, 54963, 32.294220f }, { "kodim07.png", 26618, 31.51f, 43.94f, 53352, 35.576595f }, { "kodim08.png", 31133, 25.28f, 41.15f, 63347, 29.509914f }, { "kodim09.png", 24777, 32.05f, 45.85f, 51355, 35.985966f }, { "kodim10.png", 27247, 32.20f, 45.77f, 54291, 36.395000f }, { "kodim11.png", 26579, 29.22f, 43.68f, 55491, 33.468971f }, { "kodim12.png", 25102, 32.96f, 46.77f, 51465, 36.722233f }, { "kodim13.png", 31604, 24.25f, 41.25f, 62629, 27.588623f }, { "kodim14.png", 31162, 27.81f, 39.65f, 62866, 31.206463f }, { "kodim15.png", 25528, 31.26f, 42.87f, 53343, 35.026314f }, { "kodim16.png", 26894, 32.21f, 47.78f, 51325, 35.555458f }, { "kodim17.png", 29334, 31.40f, 45.66f, 55630, 35.909283f }, { "kodim18.png", 30929, 27.46f, 41.54f, 62421, 31.348171f }, { "kodim19.png", 27889, 29.69f, 44.95f, 55055, 33.613987f }, { "kodim20.png", 21104, 31.30f, 45.31f, 47136, 35.759407f }, { "kodim21.png", 25943, 28.53f, 44.45f, 54768, 32.415817f }, { "kodim22.png", 29277, 29.85f, 42.63f, 60889, 33.495415f }, { "kodim23.png", 23550, 31.69f, 45.11f, 53774, 36.223492f }, { "kodim24.png", 29613, 26.75f, 40.61f, 59014, 31.522869f }, { "white_1x1.png", 189, 100.0f, 100.0f, 189, 100.000000f }, { "wikipedia.png", 38961, 24.10f, 30.47f, 69558, 27.630802f }, { "alpha0.png", 766, 100.0f, 56.16f, 747, 100.000000f } }; const uint32_t TOTAL_TEST_FILES = sizeof(g_test_files) / sizeof(g_test_files[0]); static bool test_mode(command_line_params& opts) { uint32_t total_mismatches = 0; // TODO: Record min/max/avgs // TODO: Add another ETC1S quality level // Minor differences in how floating point code is optimized can result in slightly different generated files. const float ETC1S_PSNR_THRESHOLD = .03f; const float ETC1S_FILESIZE_THRESHOLD = .045f; for (uint32_t i = 0; i < TOTAL_TEST_FILES; i++) { std::string filename(opts.m_test_file_dir); if (filename.size()) { filename.push_back('/'); } filename += std::string(g_test_files[i].m_pFilename); basisu::vector source_images(1); image& source_image = source_images[0]; if (!load_png(filename.c_str(), source_image)) { error_printf("Failed loading test image \"%s\"\n", filename.c_str()); return false; } printf("Loaded file \"%s\", dimemsions %ux%u has alpha: %u\n", filename.c_str(), source_image.get_width(), source_image.get_height(), source_image.has_alpha()); image_stats stats; uint32_t flags_and_quality; float uastc_rdo_quality = 0.0f; size_t data_size = 0; // Test ETC1S flags_and_quality = (opts.m_comp_params.m_multithreading ? cFlagThreaded : 0) | cFlagPrintStats | cFlagPrintStatus; { printf("**** Testing ETC1S non-OpenCL level 1\n"); // Level 1 void* pData = basis_compress(source_images, flags_and_quality, uastc_rdo_quality, &data_size, &stats); if (!pData) { error_printf("basis_compress() failed!\n"); return false; } basis_free_data(pData); printf("ETC1S level 1 Size: %u, PSNR: %f\n", (uint32_t)data_size, stats.m_basis_rgba_avg_psnr); float file_size_ratio = fabs((data_size / (float)g_test_files[i].m_etc1s_size) - 1.0f); if (file_size_ratio > ETC1S_FILESIZE_THRESHOLD) { error_printf("Expected ETC1S file size was %u, but got %u instead!\n", g_test_files[i].m_etc1s_size, (uint32_t)data_size); total_mismatches++; } if (fabs(stats.m_basis_rgba_avg_psnr - g_test_files[i].m_etc1s_psnr) > ETC1S_PSNR_THRESHOLD) { error_printf("Expected ETC1S RGBA Avg PSNR was %f, but got %f instead!\n", g_test_files[i].m_etc1s_psnr, stats.m_basis_rgba_avg_psnr); total_mismatches++; } } { printf("**** Testing ETC1S non-OpenCL level 128\n"); // Test ETC1S level 128 flags_and_quality |= 128; void* pData = basis_compress(source_images, flags_and_quality, uastc_rdo_quality, &data_size, &stats); if (!pData) { error_printf("basis_compress() failed!\n"); return false; } basis_free_data(pData); printf("ETC1S level 128 Size: %u, PSNR: %f\n", (uint32_t)data_size, stats.m_basis_rgba_avg_psnr); float file_size_ratio = fabs((data_size / (float)g_test_files[i].m_etc1s_128_size) - 1.0f); if (file_size_ratio > ETC1S_FILESIZE_THRESHOLD) { error_printf("Expected ETC1S file size was %u, but got %u instead!\n", g_test_files[i].m_etc1s_128_size, (uint32_t)data_size); total_mismatches++; } if (fabs(stats.m_basis_rgba_avg_psnr - g_test_files[i].m_etc1s_128_psnr) > ETC1S_PSNR_THRESHOLD) { error_printf("Expected ETC1S RGBA Avg PSNR was %f, but got %f instead!\n", g_test_files[i].m_etc1s_128_psnr, stats.m_basis_rgba_avg_psnr); total_mismatches++; } } if (opencl_is_available()) { printf("**** Testing ETC1S OpenCL level 1\n"); // Test ETC1S OpenCL level 1 flags_and_quality = (opts.m_comp_params.m_multithreading ? cFlagThreaded : 0) | cFlagUseOpenCL | cFlagPrintStats | cFlagPrintStatus; void *pData = basis_compress(source_images, flags_and_quality, uastc_rdo_quality, &data_size, &stats); if (!pData) { error_printf("basis_compress() failed!\n"); return false; } basis_free_data(pData); printf("ETC1S+OpenCL Size: %u, PSNR: %f\n", (uint32_t)data_size, stats.m_basis_rgba_avg_psnr); float file_size_ratio = fabs((data_size / (float)g_test_files[i].m_etc1s_size) - 1.0f); if (file_size_ratio > .04f) { error_printf("Expected ETC1S+OpenCL file size was %u, but got %u instead!\n", g_test_files[i].m_etc1s_size, (uint32_t)data_size); total_mismatches++; } if (g_test_files[i].m_etc1s_psnr == 100.0f) { // TODO if (stats.m_basis_rgba_avg_psnr < 69.0f) { error_printf("Expected ETC1S+OpenCL RGBA Avg PSNR was %f, but got %f instead!\n", g_test_files[i].m_etc1s_psnr, stats.m_basis_rgba_avg_psnr); total_mismatches++; } } else if (fabs(stats.m_basis_rgba_avg_psnr - g_test_files[i].m_etc1s_psnr) > .2f) { error_printf("Expected ETC1S+OpenCL RGBA Avg PSNR was %f, but got %f instead!\n", g_test_files[i].m_etc1s_psnr, stats.m_basis_rgba_avg_psnr); total_mismatches++; } } // Test UASTC { printf("**** Testing UASTC\n"); flags_and_quality = (opts.m_comp_params.m_multithreading ? cFlagThreaded : 0) | cFlagUASTC | cFlagPrintStats | cFlagPrintStatus; void* pData = basis_compress(source_images, flags_and_quality, uastc_rdo_quality, &data_size, &stats); if (!pData) { error_printf("basis_compress() failed!\n"); return false; } basis_free_data(pData); printf("UASTC Size: %u, PSNR: %f\n", (uint32_t)data_size, stats.m_basis_rgba_avg_psnr); if (fabs(stats.m_basis_rgba_avg_psnr - g_test_files[i].m_uastc_psnr) > .005f) { error_printf("Expected UASTC RGBA Avg PSNR was %f, but got %f instead!\n", g_test_files[i].m_etc1s_psnr, stats.m_basis_rgba_avg_psnr); total_mismatches++; } } } printf("Total mismatches: %u\n", total_mismatches); bool result = true; if (total_mismatches) { error_printf("Test FAILED\n"); result = false; } else printf("Test succeeded\n"); return result; } static bool clbench_mode(command_line_params& opts) { BASISU_NOTE_UNUSED(opts); bool opencl_failed = false; bool use_cl = basis_benchmark_etc1s_opencl(&opencl_failed); if (use_cl) printf("OpenCL ETC1S encoding is faster on this machine\n"); else { if (opencl_failed) printf("OpenCL failed!\n"); printf("CPU ETC1S encoding is faster on this machine\n"); } return true; } static int main_internal(int argc, const char **argv) { printf("Basis Universal GPU Texture Compressor v" BASISU_TOOL_VERSION "\nCopyright (C) 2019-2022 Binomial LLC, All rights reserved\n"); //interval_timer tm; //tm.start(); // See if OpenCL support has been disabled. We don't want to parse the command line until the lib is initialized bool use_opencl = false; bool opencl_force_serialization = false; for (int i = 1; i < argc; i++) { if ((strcmp(argv[i], "-opencl") == 0) || (strcmp(argv[i], "-clbench") == 0)) use_opencl = true; if (strcmp(argv[i], "-opencl_serialize") == 0) opencl_force_serialization = true; } #ifndef BASISU_SUPPORT_OPENCL if (use_opencl) { fprintf(stderr, "WARNING: -opencl specified, but OpenCL support was not enabled at compile time! With cmake, use -D OPENCL=1. Falling back to CPU compression.\n"); } #endif basisu_encoder_init(use_opencl, opencl_force_serialization); //printf("Encoder and transcoder libraries initialized in %3.3f ms\n", tm.get_elapsed_ms()); #if defined(DEBUG) || defined(_DEBUG) printf("DEBUG build\n"); #endif if (argc == 1) { print_usage(); return EXIT_FAILURE; } command_line_params opts; if (!opts.parse(argc, argv)) { //print_usage(); return EXIT_FAILURE; } #if BASISU_SUPPORT_SSE printf("Using SSE 4.1: %u, Multithreading: %u, Zstandard support: %u, OpenCL: %u\n", g_cpu_supports_sse41, (uint32_t)opts.m_comp_params.m_multithreading, basist::basisu_transcoder_supports_ktx2_zstd(), opencl_is_available()); #else printf("Multithreading: %u, Zstandard support: %u, OpenCL: %u\n", (uint32_t)opts.m_comp_params.m_multithreading, basist::basisu_transcoder_supports_ktx2_zstd(), opencl_is_available()); #endif if (!opts.process_listing_files()) return EXIT_FAILURE; if (opts.m_mode == cDefault) { for (size_t i = 0; i < opts.m_input_filenames.size(); i++) { std::string ext(string_get_extension(opts.m_input_filenames[i])); if ((strcasecmp(ext.c_str(), "basis") == 0) || (strcasecmp(ext.c_str(), "ktx") == 0) || (strcasecmp(ext.c_str(), "ktx2") == 0)) { // If they haven't specified any modes, and they give us a .basis file, then assume they want to unpack it. opts.m_mode = cUnpack; break; } } } bool status = false; switch (opts.m_mode) { case cDefault: case cCompress: status = compress_mode(opts); break; case cValidate: case cInfo: case cUnpack: status = unpack_and_validate_mode(opts); break; case cCompare: status = compare_mode(opts); break; case cVersion: status = true; // We printed the version at the beginning of main_internal break; case cBench: status = bench_mode(opts); break; case cCompSize: status = compsize_mode(opts); break; case cTest: status = test_mode(opts); break; case cCLBench: status = clbench_mode(opts); break; case cSplitImage: status = split_image_mode(opts); break; case cCombineImages: status = combine_images_mode(opts); break; default: assert(0); break; } return status ? EXIT_SUCCESS : EXIT_FAILURE; } int main(int argc, const char** argv) { #ifdef _WIN32 SetConsoleOutputCP(CP_UTF8); #endif #ifdef _DEBUG printf("DEBUG\n"); #endif int status = EXIT_FAILURE; #if BASISU_CATCH_EXCEPTIONS try { status = main_internal(argc, argv); } catch (const std::exception &exc) { fprintf(stderr, "Fatal error: Caught exception \"%s\"\n", exc.what()); } catch (...) { fprintf(stderr, "Fatal error: Uncaught exception!\n"); } #else status = main_internal(argc, argv); #endif return status; }