// basisu_containers.h #pragma once #include #include #include #include #include #if defined(__linux__) && !defined(ANDROID) // Only for malloc_usable_size() in basisu_containers_impl.h #include #define HAS_MALLOC_USABLE_SIZE 1 #endif // Set to 1 to always check vector operator[], front(), and back() even in release. #define BASISU_VECTOR_FORCE_CHECKING 0 // If 1, the vector container will not query the CRT to get the size of resized memory blocks. #define BASISU_VECTOR_DETERMINISTIC 1 #ifdef _MSC_VER #define BASISU_FORCE_INLINE __forceinline #else #define BASISU_FORCE_INLINE inline #endif namespace basisu { enum { cInvalidIndex = -1 }; namespace helpers { inline bool is_power_of_2(uint32_t x) { return x && ((x & (x - 1U)) == 0U); } inline bool is_power_of_2(uint64_t x) { return x && ((x & (x - 1U)) == 0U); } template const T& minimum(const T& a, const T& b) { return (b < a) ? b : a; } template const T& maximum(const T& a, const T& b) { return (a < b) ? b : a; } inline uint32_t floor_log2i(uint32_t v) { uint32_t l = 0; while (v > 1U) { v >>= 1; l++; } return l; } inline uint32_t next_pow2(uint32_t val) { val--; val |= val >> 16; val |= val >> 8; val |= val >> 4; val |= val >> 2; val |= val >> 1; return val + 1; } inline uint64_t next_pow2(uint64_t val) { val--; val |= val >> 32; val |= val >> 16; val |= val >> 8; val |= val >> 4; val |= val >> 2; val |= val >> 1; return val + 1; } } // namespace helpers template inline T* construct(T* p) { return new (static_cast(p)) T; } template inline T* construct(T* p, const U& init) { return new (static_cast(p)) T(init); } template inline void construct_array(T* p, size_t n) { T* q = p + n; for (; p != q; ++p) new (static_cast(p)) T; } template inline void construct_array(T* p, size_t n, const U& init) { T* q = p + n; for (; p != q; ++p) new (static_cast(p)) T(init); } template inline void destruct(T* p) { (void)p; p->~T(); } template inline void destruct_array(T* p, size_t n) { T* q = p + n; for (; p != q; ++p) p->~T(); } template struct int_traits { enum { cMin = INT32_MIN, cMax = INT32_MAX, cSigned = true }; }; template<> struct int_traits { enum { cMin = INT8_MIN, cMax = INT8_MAX, cSigned = true }; }; template<> struct int_traits { enum { cMin = INT16_MIN, cMax = INT16_MAX, cSigned = true }; }; template<> struct int_traits { enum { cMin = INT32_MIN, cMax = INT32_MAX, cSigned = true }; }; template<> struct int_traits { enum { cMin = 0, cMax = UINT8_MAX, cSigned = false }; }; template<> struct int_traits { enum { cMin = 0, cMax = UINT16_MAX, cSigned = false }; }; template<> struct int_traits { enum { cMin = 0, cMax = UINT32_MAX, cSigned = false }; }; template struct scalar_type { enum { cFlag = false }; static inline void construct(T* p) { basisu::construct(p); } static inline void construct(T* p, const T& init) { basisu::construct(p, init); } static inline void construct_array(T* p, size_t n) { basisu::construct_array(p, n); } static inline void destruct(T* p) { basisu::destruct(p); } static inline void destruct_array(T* p, size_t n) { basisu::destruct_array(p, n); } }; template struct scalar_type { enum { cFlag = true }; static inline void construct(T** p) { memset(p, 0, sizeof(T*)); } static inline void construct(T** p, T* init) { *p = init; } static inline void construct_array(T** p, size_t n) { memset(p, 0, sizeof(T*) * n); } static inline void destruct(T** p) { p; } static inline void destruct_array(T** p, size_t n) { p, n; } }; #define BASISU_DEFINE_BUILT_IN_TYPE(X) \ template<> struct scalar_type { \ enum { cFlag = true }; \ static inline void construct(X* p) { memset(p, 0, sizeof(X)); } \ static inline void construct(X* p, const X& init) { memcpy(p, &init, sizeof(X)); } \ static inline void construct_array(X* p, size_t n) { memset(p, 0, sizeof(X) * n); } \ static inline void destruct(X* p) { p; } \ static inline void destruct_array(X* p, size_t n) { p, n; } }; BASISU_DEFINE_BUILT_IN_TYPE(bool) BASISU_DEFINE_BUILT_IN_TYPE(char) BASISU_DEFINE_BUILT_IN_TYPE(unsigned char) BASISU_DEFINE_BUILT_IN_TYPE(short) BASISU_DEFINE_BUILT_IN_TYPE(unsigned short) BASISU_DEFINE_BUILT_IN_TYPE(int) BASISU_DEFINE_BUILT_IN_TYPE(unsigned int) BASISU_DEFINE_BUILT_IN_TYPE(long) BASISU_DEFINE_BUILT_IN_TYPE(unsigned long) #ifdef __GNUC__ BASISU_DEFINE_BUILT_IN_TYPE(long long) BASISU_DEFINE_BUILT_IN_TYPE(unsigned long long) #else BASISU_DEFINE_BUILT_IN_TYPE(__int64) BASISU_DEFINE_BUILT_IN_TYPE(unsigned __int64) #endif BASISU_DEFINE_BUILT_IN_TYPE(float) BASISU_DEFINE_BUILT_IN_TYPE(double) BASISU_DEFINE_BUILT_IN_TYPE(long double) #undef BASISU_DEFINE_BUILT_IN_TYPE template struct bitwise_movable { enum { cFlag = false }; }; #define BASISU_DEFINE_BITWISE_MOVABLE(Q) template<> struct bitwise_movable { enum { cFlag = true }; }; template struct bitwise_copyable { enum { cFlag = false }; }; #define BASISU_DEFINE_BITWISE_COPYABLE(Q) template<> struct bitwise_copyable { enum { cFlag = true }; }; #define BASISU_IS_POD(T) __is_pod(T) #define BASISU_IS_SCALAR_TYPE(T) (scalar_type::cFlag) #if !defined(BASISU_HAVE_STD_TRIVIALLY_COPYABLE) && defined(__GNUC__) && __GNUC__<5 #define BASISU_IS_TRIVIALLY_COPYABLE(...) __has_trivial_copy(__VA_ARGS__) #else #define BASISU_IS_TRIVIALLY_COPYABLE(...) std::is_trivially_copyable<__VA_ARGS__>::value #endif // TODO: clean this up #define BASISU_IS_BITWISE_COPYABLE(T) (BASISU_IS_SCALAR_TYPE(T) || BASISU_IS_POD(T) || BASISU_IS_TRIVIALLY_COPYABLE(T) || (bitwise_copyable::cFlag)) #define BASISU_IS_BITWISE_COPYABLE_OR_MOVABLE(T) (BASISU_IS_BITWISE_COPYABLE(T) || (bitwise_movable::cFlag)) #define BASISU_HAS_DESTRUCTOR(T) ((!scalar_type::cFlag) && (!__is_pod(T))) typedef char(&yes_t)[1]; typedef char(&no_t)[2]; template yes_t class_test(int U::*); template no_t class_test(...); template struct is_class { enum { value = (sizeof(class_test(0)) == sizeof(yes_t)) }; }; template struct is_pointer { enum { value = false }; }; template struct is_pointer { enum { value = true }; }; struct empty_type { }; BASISU_DEFINE_BITWISE_COPYABLE(empty_type); BASISU_DEFINE_BITWISE_MOVABLE(empty_type); template struct rel_ops { friend bool operator!=(const T& x, const T& y) { return (!(x == y)); } friend bool operator> (const T& x, const T& y) { return (y < x); } friend bool operator<=(const T& x, const T& y) { return (!(y < x)); } friend bool operator>=(const T& x, const T& y) { return (!(x < y)); } }; struct elemental_vector { void* m_p; uint32_t m_size; uint32_t m_capacity; typedef void (*object_mover)(void* pDst, void* pSrc, uint32_t num); bool increase_capacity(uint32_t min_new_capacity, bool grow_hint, uint32_t element_size, object_mover pRelocate, bool nofail); }; template class vector : public rel_ops< vector > { public: typedef T* iterator; typedef const T* const_iterator; typedef T value_type; typedef T& reference; typedef const T& const_reference; typedef T* pointer; typedef const T* const_pointer; inline vector() : m_p(NULL), m_size(0), m_capacity(0) { } inline vector(uint32_t n, const T& init) : m_p(NULL), m_size(0), m_capacity(0) { increase_capacity(n, false); construct_array(m_p, n, init); m_size = n; } inline vector(const vector& other) : m_p(NULL), m_size(0), m_capacity(0) { increase_capacity(other.m_size, false); m_size = other.m_size; if (BASISU_IS_BITWISE_COPYABLE(T)) { if ((m_p) && (other.m_p)) memcpy(m_p, other.m_p, m_size * sizeof(T)); } else { T* pDst = m_p; const T* pSrc = other.m_p; for (uint32_t i = m_size; i > 0; i--) construct(pDst++, *pSrc++); } } inline explicit vector(size_t size) : m_p(NULL), m_size(0), m_capacity(0) { resize(size); } inline ~vector() { if (m_p) { scalar_type::destruct_array(m_p, m_size); free(m_p); } } inline vector& operator= (const vector& other) { if (this == &other) return *this; if (m_capacity >= other.m_size) resize(0); else { clear(); increase_capacity(other.m_size, false); } if (BASISU_IS_BITWISE_COPYABLE(T)) { if ((m_p) && (other.m_p)) memcpy(m_p, other.m_p, other.m_size * sizeof(T)); } else { T* pDst = m_p; const T* pSrc = other.m_p; for (uint32_t i = other.m_size; i > 0; i--) construct(pDst++, *pSrc++); } m_size = other.m_size; return *this; } BASISU_FORCE_INLINE const T* begin() const { return m_p; } BASISU_FORCE_INLINE T* begin() { return m_p; } BASISU_FORCE_INLINE const T* end() const { return m_p + m_size; } BASISU_FORCE_INLINE T* end() { return m_p + m_size; } BASISU_FORCE_INLINE bool empty() const { return !m_size; } BASISU_FORCE_INLINE uint32_t size() const { return m_size; } BASISU_FORCE_INLINE uint32_t size_in_bytes() const { return m_size * sizeof(T); } BASISU_FORCE_INLINE uint32_t capacity() const { return m_capacity; } // operator[] will assert on out of range indices, but in final builds there is (and will never be) any range checking on this method. //BASISU_FORCE_INLINE const T& operator[] (uint32_t i) const { assert(i < m_size); return m_p[i]; } //BASISU_FORCE_INLINE T& operator[] (uint32_t i) { assert(i < m_size); return m_p[i]; } #if !BASISU_VECTOR_FORCE_CHECKING BASISU_FORCE_INLINE const T& operator[] (size_t i) const { assert(i < m_size); return m_p[i]; } BASISU_FORCE_INLINE T& operator[] (size_t i) { assert(i < m_size); return m_p[i]; } #else BASISU_FORCE_INLINE const T& operator[] (size_t i) const { if (i >= m_size) { fprintf(stderr, "operator[] invalid index: %u, max entries %u, type size %u\n", (uint32_t)i, m_size, (uint32_t)sizeof(T)); abort(); } return m_p[i]; } BASISU_FORCE_INLINE T& operator[] (size_t i) { if (i >= m_size) { fprintf(stderr, "operator[] invalid index: %u, max entries %u, type size %u\n", (uint32_t)i, m_size, (uint32_t)sizeof(T)); abort(); } return m_p[i]; } #endif // at() always includes range checking, even in final builds, unlike operator []. // The first element is returned if the index is out of range. BASISU_FORCE_INLINE const T& at(size_t i) const { assert(i < m_size); return (i >= m_size) ? m_p[0] : m_p[i]; } BASISU_FORCE_INLINE T& at(size_t i) { assert(i < m_size); return (i >= m_size) ? m_p[0] : m_p[i]; } #if !BASISU_VECTOR_FORCE_CHECKING BASISU_FORCE_INLINE const T& front() const { assert(m_size); return m_p[0]; } BASISU_FORCE_INLINE T& front() { assert(m_size); return m_p[0]; } BASISU_FORCE_INLINE const T& back() const { assert(m_size); return m_p[m_size - 1]; } BASISU_FORCE_INLINE T& back() { assert(m_size); return m_p[m_size - 1]; } #else BASISU_FORCE_INLINE const T& front() const { if (!m_size) { fprintf(stderr, "front: vector is empty, type size %u\n", (uint32_t)sizeof(T)); abort(); } return m_p[0]; } BASISU_FORCE_INLINE T& front() { if (!m_size) { fprintf(stderr, "front: vector is empty, type size %u\n", (uint32_t)sizeof(T)); abort(); } return m_p[0]; } BASISU_FORCE_INLINE const T& back() const { if(!m_size) { fprintf(stderr, "back: vector is empty, type size %u\n", (uint32_t)sizeof(T)); abort(); } return m_p[m_size - 1]; } BASISU_FORCE_INLINE T& back() { if (!m_size) { fprintf(stderr, "back: vector is empty, type size %u\n", (uint32_t)sizeof(T)); abort(); } return m_p[m_size - 1]; } #endif BASISU_FORCE_INLINE const T* get_ptr() const { return m_p; } BASISU_FORCE_INLINE T* get_ptr() { return m_p; } BASISU_FORCE_INLINE const T* data() const { return m_p; } BASISU_FORCE_INLINE T* data() { return m_p; } // clear() sets the container to empty, then frees the allocated block. inline void clear() { if (m_p) { scalar_type::destruct_array(m_p, m_size); free(m_p); m_p = NULL; m_size = 0; m_capacity = 0; } } inline void clear_no_destruction() { if (m_p) { free(m_p); m_p = NULL; m_size = 0; m_capacity = 0; } } inline void reserve(size_t new_capacity_size_t) { if (new_capacity_size_t > UINT32_MAX) { assert(0); return; } uint32_t new_capacity = (uint32_t)new_capacity_size_t; if (new_capacity > m_capacity) increase_capacity(new_capacity, false); else if (new_capacity < m_capacity) { // Must work around the lack of a "decrease_capacity()" method. // This case is rare enough in practice that it's probably not worth implementing an optimized in-place resize. vector tmp; tmp.increase_capacity(helpers::maximum(m_size, new_capacity), false); tmp = *this; swap(tmp); } } inline bool try_reserve(size_t new_capacity_size_t) { if (new_capacity_size_t > UINT32_MAX) { assert(0); return false; } uint32_t new_capacity = (uint32_t)new_capacity_size_t; if (new_capacity > m_capacity) { if (!increase_capacity(new_capacity, false)) return false; } else if (new_capacity < m_capacity) { // Must work around the lack of a "decrease_capacity()" method. // This case is rare enough in practice that it's probably not worth implementing an optimized in-place resize. vector tmp; tmp.increase_capacity(helpers::maximum(m_size, new_capacity), false); tmp = *this; swap(tmp); } return true; } // resize(0) sets the container to empty, but does not free the allocated block. inline void resize(size_t new_size_size_t, bool grow_hint = false) { if (new_size_size_t > UINT32_MAX) { assert(0); return; } uint32_t new_size = (uint32_t)new_size_size_t; if (m_size != new_size) { if (new_size < m_size) scalar_type::destruct_array(m_p + new_size, m_size - new_size); else { if (new_size > m_capacity) increase_capacity(new_size, (new_size == (m_size + 1)) || grow_hint); scalar_type::construct_array(m_p + m_size, new_size - m_size); } m_size = new_size; } } inline bool try_resize(size_t new_size_size_t, bool grow_hint = false) { if (new_size_size_t > UINT32_MAX) { assert(0); return false; } uint32_t new_size = (uint32_t)new_size_size_t; if (m_size != new_size) { if (new_size < m_size) scalar_type::destruct_array(m_p + new_size, m_size - new_size); else { if (new_size > m_capacity) { if (!increase_capacity(new_size, (new_size == (m_size + 1)) || grow_hint, true)) return false; } scalar_type::construct_array(m_p + m_size, new_size - m_size); } m_size = new_size; } return true; } // If size >= capacity/2, reset() sets the container's size to 0 but doesn't free the allocated block (because the container may be similarly loaded in the future). // Otherwise it blows away the allocated block. See http://www.codercorner.com/blog/?p=494 inline void reset() { if (m_size >= (m_capacity >> 1)) resize(0); else clear(); } inline T* enlarge(uint32_t i) { uint32_t cur_size = m_size; resize(cur_size + i, true); return get_ptr() + cur_size; } inline T* try_enlarge(uint32_t i) { uint32_t cur_size = m_size; if (!try_resize(cur_size + i, true)) return NULL; return get_ptr() + cur_size; } BASISU_FORCE_INLINE void push_back(const T& obj) { assert(!m_p || (&obj < m_p) || (&obj >= (m_p + m_size))); if (m_size >= m_capacity) increase_capacity(m_size + 1, true); scalar_type::construct(m_p + m_size, obj); m_size++; } inline bool try_push_back(const T& obj) { assert(!m_p || (&obj < m_p) || (&obj >= (m_p + m_size))); if (m_size >= m_capacity) { if (!increase_capacity(m_size + 1, true, true)) return false; } scalar_type::construct(m_p + m_size, obj); m_size++; return true; } inline void push_back_value(T obj) { if (m_size >= m_capacity) increase_capacity(m_size + 1, true); scalar_type::construct(m_p + m_size, obj); m_size++; } inline void pop_back() { assert(m_size); if (m_size) { m_size--; scalar_type::destruct(&m_p[m_size]); } } inline void insert(uint32_t index, const T* p, uint32_t n) { assert(index <= m_size); if (!n) return; const uint32_t orig_size = m_size; resize(m_size + n, true); const uint32_t num_to_move = orig_size - index; if (BASISU_IS_BITWISE_COPYABLE(T)) { // This overwrites the destination object bits, but bitwise copyable means we don't need to worry about destruction. memmove(m_p + index + n, m_p + index, sizeof(T) * num_to_move); } else { const T* pSrc = m_p + orig_size - 1; T* pDst = const_cast(pSrc) + n; for (uint32_t i = 0; i < num_to_move; i++) { assert((pDst - m_p) < (int)m_size); *pDst-- = *pSrc--; } } T* pDst = m_p + index; if (BASISU_IS_BITWISE_COPYABLE(T)) { // This copies in the new bits, overwriting the existing objects, which is OK for copyable types that don't need destruction. memcpy(pDst, p, sizeof(T) * n); } else { for (uint32_t i = 0; i < n; i++) { assert((pDst - m_p) < (int)m_size); *pDst++ = *p++; } } } inline void insert(T* p, const T& obj) { int64_t ofs = p - begin(); if ((ofs < 0) || (ofs > UINT32_MAX)) { assert(0); return; } insert((uint32_t)ofs, &obj, 1); } // push_front() isn't going to be very fast - it's only here for usability. inline void push_front(const T& obj) { insert(0, &obj, 1); } vector& append(const vector& other) { if (other.m_size) insert(m_size, &other[0], other.m_size); return *this; } vector& append(const T* p, uint32_t n) { if (n) insert(m_size, p, n); return *this; } inline void erase(uint32_t start, uint32_t n) { assert((start + n) <= m_size); if ((start + n) > m_size) return; if (!n) return; const uint32_t num_to_move = m_size - (start + n); T* pDst = m_p + start; const T* pSrc = m_p + start + n; if (BASISU_IS_BITWISE_COPYABLE_OR_MOVABLE(T)) { // This test is overly cautious. if ((!BASISU_IS_BITWISE_COPYABLE(T)) || (BASISU_HAS_DESTRUCTOR(T))) { // Type has been marked explictly as bitwise movable, which means we can move them around but they may need to be destructed. // First destroy the erased objects. scalar_type::destruct_array(pDst, n); } // Copy "down" the objects to preserve, filling in the empty slots. memmove(pDst, pSrc, num_to_move * sizeof(T)); } else { // Type is not bitwise copyable or movable. // Move them down one at a time by using the equals operator, and destroying anything that's left over at the end. T* pDst_end = pDst + num_to_move; while (pDst != pDst_end) *pDst++ = *pSrc++; scalar_type::destruct_array(pDst_end, n); } m_size -= n; } inline void erase(uint32_t index) { erase(index, 1); } inline void erase(T* p) { assert((p >= m_p) && (p < (m_p + m_size))); erase(static_cast(p - m_p)); } inline void erase(T *pFirst, T *pEnd) { assert(pFirst <= pEnd); assert(pFirst >= begin() && pFirst <= end()); assert(pEnd >= begin() && pEnd <= end()); int64_t ofs = pFirst - begin(); if ((ofs < 0) || (ofs > UINT32_MAX)) { assert(0); return; } int64_t n = pEnd - pFirst; if ((n < 0) || (n > UINT32_MAX)) { assert(0); return; } erase((uint32_t)ofs, (uint32_t)n); } void erase_unordered(uint32_t index) { assert(index < m_size); if ((index + 1) < m_size) (*this)[index] = back(); pop_back(); } inline bool operator== (const vector& rhs) const { if (m_size != rhs.m_size) return false; else if (m_size) { if (scalar_type::cFlag) return memcmp(m_p, rhs.m_p, sizeof(T) * m_size) == 0; else { const T* pSrc = m_p; const T* pDst = rhs.m_p; for (uint32_t i = m_size; i; i--) if (!(*pSrc++ == *pDst++)) return false; } } return true; } inline bool operator< (const vector& rhs) const { const uint32_t min_size = helpers::minimum(m_size, rhs.m_size); const T* pSrc = m_p; const T* pSrc_end = m_p + min_size; const T* pDst = rhs.m_p; while ((pSrc < pSrc_end) && (*pSrc == *pDst)) { pSrc++; pDst++; } if (pSrc < pSrc_end) return *pSrc < *pDst; return m_size < rhs.m_size; } inline void swap(vector& other) { std::swap(m_p, other.m_p); std::swap(m_size, other.m_size); std::swap(m_capacity, other.m_capacity); } inline void sort() { std::sort(begin(), end()); } inline void unique() { if (!empty()) { sort(); resize(std::unique(begin(), end()) - begin()); } } inline void reverse() { uint32_t j = m_size >> 1; for (uint32_t i = 0; i < j; i++) std::swap(m_p[i], m_p[m_size - 1 - i]); } inline int find(const T& key) const { const T* p = m_p; const T* p_end = m_p + m_size; uint32_t index = 0; while (p != p_end) { if (key == *p) return index; p++; index++; } return cInvalidIndex; } inline int find_sorted(const T& key) const { if (m_size) { // Uniform binary search - Knuth Algorithm 6.2.1 U, unrolled twice. int i = ((m_size + 1) >> 1) - 1; int m = m_size; for (; ; ) { assert(i >= 0 && i < (int)m_size); const T* pKey_i = m_p + i; int cmp = key < *pKey_i; #if defined(_DEBUG) || defined(DEBUG) int cmp2 = *pKey_i < key; assert((cmp != cmp2) || (key == *pKey_i)); #endif if ((!cmp) && (key == *pKey_i)) return i; m >>= 1; if (!m) break; cmp = -cmp; i += (((m + 1) >> 1) ^ cmp) - cmp; if (i < 0) break; assert(i >= 0 && i < (int)m_size); pKey_i = m_p + i; cmp = key < *pKey_i; #if defined(_DEBUG) || defined(DEBUG) cmp2 = *pKey_i < key; assert((cmp != cmp2) || (key == *pKey_i)); #endif if ((!cmp) && (key == *pKey_i)) return i; m >>= 1; if (!m) break; cmp = -cmp; i += (((m + 1) >> 1) ^ cmp) - cmp; if (i < 0) break; } } return cInvalidIndex; } template inline int find_sorted(const T& key, Q less_than) const { if (m_size) { // Uniform binary search - Knuth Algorithm 6.2.1 U, unrolled twice. int i = ((m_size + 1) >> 1) - 1; int m = m_size; for (; ; ) { assert(i >= 0 && i < (int)m_size); const T* pKey_i = m_p + i; int cmp = less_than(key, *pKey_i); if ((!cmp) && (!less_than(*pKey_i, key))) return i; m >>= 1; if (!m) break; cmp = -cmp; i += (((m + 1) >> 1) ^ cmp) - cmp; if (i < 0) break; assert(i >= 0 && i < (int)m_size); pKey_i = m_p + i; cmp = less_than(key, *pKey_i); if ((!cmp) && (!less_than(*pKey_i, key))) return i; m >>= 1; if (!m) break; cmp = -cmp; i += (((m + 1) >> 1) ^ cmp) - cmp; if (i < 0) break; } } return cInvalidIndex; } inline uint32_t count_occurences(const T& key) const { uint32_t c = 0; const T* p = m_p; const T* p_end = m_p + m_size; while (p != p_end) { if (key == *p) c++; p++; } return c; } inline void set_all(const T& o) { if ((sizeof(T) == 1) && (scalar_type::cFlag)) memset(m_p, *reinterpret_cast(&o), m_size); else { T* pDst = m_p; T* pDst_end = pDst + m_size; while (pDst != pDst_end) *pDst++ = o; } } // Caller assumes ownership of the heap block associated with the container. Container is cleared. inline void* assume_ownership() { T* p = m_p; m_p = NULL; m_size = 0; m_capacity = 0; return p; } // Caller is granting ownership of the indicated heap block. // Block must have size constructed elements, and have enough room for capacity elements. // The block must have been allocated using malloc(). // Important: This method is used in Basis Universal. If you change how this container allocates memory, you'll need to change any users of this method. inline bool grant_ownership(T* p, uint32_t size, uint32_t capacity) { // To to prevent the caller from obviously shooting themselves in the foot. if (((p + capacity) > m_p) && (p < (m_p + m_capacity))) { // Can grant ownership of a block inside the container itself! assert(0); return false; } if (size > capacity) { assert(0); return false; } if (!p) { if (capacity) { assert(0); return false; } } else if (!capacity) { assert(0); return false; } clear(); m_p = p; m_size = size; m_capacity = capacity; return true; } private: T* m_p; uint32_t m_size; uint32_t m_capacity; template struct is_vector { enum { cFlag = false }; }; template struct is_vector< vector > { enum { cFlag = true }; }; static void object_mover(void* pDst_void, void* pSrc_void, uint32_t num) { T* pSrc = static_cast(pSrc_void); T* const pSrc_end = pSrc + num; T* pDst = static_cast(pDst_void); while (pSrc != pSrc_end) { // placement new new (static_cast(pDst)) T(*pSrc); pSrc->~T(); ++pSrc; ++pDst; } } inline bool increase_capacity(uint32_t min_new_capacity, bool grow_hint, bool nofail = false) { return reinterpret_cast(this)->increase_capacity( min_new_capacity, grow_hint, sizeof(T), (BASISU_IS_BITWISE_COPYABLE_OR_MOVABLE(T) || (is_vector::cFlag)) ? NULL : object_mover, nofail); } }; template struct bitwise_movable< vector > { enum { cFlag = true }; }; // Hash map template struct hasher { inline size_t operator() (const T& key) const { return static_cast(key); } }; template struct equal_to { inline bool operator()(const T& a, const T& b) const { return a == b; } }; // Important: The Hasher and Equals objects must be bitwise movable! template, typename Equals = equal_to > class hash_map { public: class iterator; class const_iterator; private: friend class iterator; friend class const_iterator; enum state { cStateInvalid = 0, cStateValid = 1 }; enum { cMinHashSize = 4U }; public: typedef hash_map hash_map_type; typedef std::pair value_type; typedef Key key_type; typedef Value referent_type; typedef Hasher hasher_type; typedef Equals equals_type; hash_map() : m_hash_shift(32), m_num_valid(0), m_grow_threshold(0) { } hash_map(const hash_map& other) : m_values(other.m_values), m_hash_shift(other.m_hash_shift), m_hasher(other.m_hasher), m_equals(other.m_equals), m_num_valid(other.m_num_valid), m_grow_threshold(other.m_grow_threshold) { } hash_map& operator= (const hash_map& other) { if (this == &other) return *this; clear(); m_values = other.m_values; m_hash_shift = other.m_hash_shift; m_num_valid = other.m_num_valid; m_grow_threshold = other.m_grow_threshold; m_hasher = other.m_hasher; m_equals = other.m_equals; return *this; } inline ~hash_map() { clear(); } const Equals& get_equals() const { return m_equals; } Equals& get_equals() { return m_equals; } void set_equals(const Equals& equals) { m_equals = equals; } const Hasher& get_hasher() const { return m_hasher; } Hasher& get_hasher() { return m_hasher; } void set_hasher(const Hasher& hasher) { m_hasher = hasher; } inline void clear() { if (!m_values.empty()) { if (BASISU_HAS_DESTRUCTOR(Key) || BASISU_HAS_DESTRUCTOR(Value)) { node* p = &get_node(0); node* p_end = p + m_values.size(); uint32_t num_remaining = m_num_valid; while (p != p_end) { if (p->state) { destruct_value_type(p); num_remaining--; if (!num_remaining) break; } p++; } } m_values.clear_no_destruction(); m_hash_shift = 32; m_num_valid = 0; m_grow_threshold = 0; } } inline void reset() { if (!m_num_valid) return; if (BASISU_HAS_DESTRUCTOR(Key) || BASISU_HAS_DESTRUCTOR(Value)) { node* p = &get_node(0); node* p_end = p + m_values.size(); uint32_t num_remaining = m_num_valid; while (p != p_end) { if (p->state) { destruct_value_type(p); p->state = cStateInvalid; num_remaining--; if (!num_remaining) break; } p++; } } else if (sizeof(node) <= 32) { memset(&m_values[0], 0, m_values.size_in_bytes()); } else { node* p = &get_node(0); node* p_end = p + m_values.size(); uint32_t num_remaining = m_num_valid; while (p != p_end) { if (p->state) { p->state = cStateInvalid; num_remaining--; if (!num_remaining) break; } p++; } } m_num_valid = 0; } inline uint32_t size() { return m_num_valid; } inline uint32_t get_table_size() { return m_values.size(); } inline bool empty() { return !m_num_valid; } inline void reserve(uint32_t new_capacity) { uint64_t new_hash_size = helpers::maximum(1U, new_capacity); new_hash_size = new_hash_size * 2ULL; if (!helpers::is_power_of_2(new_hash_size)) new_hash_size = helpers::next_pow2(new_hash_size); new_hash_size = helpers::maximum(cMinHashSize, new_hash_size); new_hash_size = helpers::minimum(0x80000000UL, new_hash_size); if (new_hash_size > m_values.size()) rehash((uint32_t)new_hash_size); } class iterator { friend class hash_map; friend class hash_map::const_iterator; public: inline iterator() : m_pTable(NULL), m_index(0) { } inline iterator(hash_map_type& table, uint32_t index) : m_pTable(&table), m_index(index) { } inline iterator(const iterator& other) : m_pTable(other.m_pTable), m_index(other.m_index) { } inline iterator& operator= (const iterator& other) { m_pTable = other.m_pTable; m_index = other.m_index; return *this; } // post-increment inline iterator operator++(int) { iterator result(*this); ++*this; return result; } // pre-increment inline iterator& operator++() { probe(); return *this; } inline value_type& operator*() const { return *get_cur(); } inline value_type* operator->() const { return get_cur(); } inline bool operator == (const iterator& b) const { return (m_pTable == b.m_pTable) && (m_index == b.m_index); } inline bool operator != (const iterator& b) const { return !(*this == b); } inline bool operator == (const const_iterator& b) const { return (m_pTable == b.m_pTable) && (m_index == b.m_index); } inline bool operator != (const const_iterator& b) const { return !(*this == b); } private: hash_map_type* m_pTable; uint32_t m_index; inline value_type* get_cur() const { assert(m_pTable && (m_index < m_pTable->m_values.size())); assert(m_pTable->get_node_state(m_index) == cStateValid); return &m_pTable->get_node(m_index); } inline void probe() { assert(m_pTable); m_index = m_pTable->find_next(m_index); } }; class const_iterator { friend class hash_map; friend class hash_map::iterator; public: inline const_iterator() : m_pTable(NULL), m_index(0) { } inline const_iterator(const hash_map_type& table, uint32_t index) : m_pTable(&table), m_index(index) { } inline const_iterator(const iterator& other) : m_pTable(other.m_pTable), m_index(other.m_index) { } inline const_iterator(const const_iterator& other) : m_pTable(other.m_pTable), m_index(other.m_index) { } inline const_iterator& operator= (const const_iterator& other) { m_pTable = other.m_pTable; m_index = other.m_index; return *this; } inline const_iterator& operator= (const iterator& other) { m_pTable = other.m_pTable; m_index = other.m_index; return *this; } // post-increment inline const_iterator operator++(int) { const_iterator result(*this); ++*this; return result; } // pre-increment inline const_iterator& operator++() { probe(); return *this; } inline const value_type& operator*() const { return *get_cur(); } inline const value_type* operator->() const { return get_cur(); } inline bool operator == (const const_iterator& b) const { return (m_pTable == b.m_pTable) && (m_index == b.m_index); } inline bool operator != (const const_iterator& b) const { return !(*this == b); } inline bool operator == (const iterator& b) const { return (m_pTable == b.m_pTable) && (m_index == b.m_index); } inline bool operator != (const iterator& b) const { return !(*this == b); } private: const hash_map_type* m_pTable; uint32_t m_index; inline const value_type* get_cur() const { assert(m_pTable && (m_index < m_pTable->m_values.size())); assert(m_pTable->get_node_state(m_index) == cStateValid); return &m_pTable->get_node(m_index); } inline void probe() { assert(m_pTable); m_index = m_pTable->find_next(m_index); } }; inline const_iterator begin() const { if (!m_num_valid) return end(); return const_iterator(*this, find_next(UINT32_MAX)); } inline const_iterator end() const { return const_iterator(*this, m_values.size()); } inline iterator begin() { if (!m_num_valid) return end(); return iterator(*this, find_next(UINT32_MAX)); } inline iterator end() { return iterator(*this, m_values.size()); } // insert_result.first will always point to inserted key/value (or the already existing key/value). // insert_resutt.second will be true if a new key/value was inserted, or false if the key already existed (in which case first will point to the already existing value). typedef std::pair insert_result; inline insert_result insert(const Key& k, const Value& v = Value()) { insert_result result; if (!insert_no_grow(result, k, v)) { grow(); // This must succeed. if (!insert_no_grow(result, k, v)) { fprintf(stderr, "insert() failed"); abort(); } } return result; } inline insert_result insert(const value_type& v) { return insert(v.first, v.second); } inline const_iterator find(const Key& k) const { return const_iterator(*this, find_index(k)); } inline iterator find(const Key& k) { return iterator(*this, find_index(k)); } inline bool erase(const Key& k) { uint32_t i = find_index(k); if (i >= m_values.size()) return false; node* pDst = &get_node(i); destruct_value_type(pDst); pDst->state = cStateInvalid; m_num_valid--; for (; ; ) { uint32_t r, j = i; node* pSrc = pDst; do { if (!i) { i = m_values.size() - 1; pSrc = &get_node(i); } else { i--; pSrc--; } if (!pSrc->state) return true; r = hash_key(pSrc->first); } while ((i <= r && r < j) || (r < j && j < i) || (j < i && i <= r)); move_node(pDst, pSrc); pDst = pSrc; } } inline void swap(hash_map_type& other) { m_values.swap(other.m_values); std::swap(m_hash_shift, other.m_hash_shift); std::swap(m_num_valid, other.m_num_valid); std::swap(m_grow_threshold, other.m_grow_threshold); std::swap(m_hasher, other.m_hasher); std::swap(m_equals, other.m_equals); } private: struct node : public value_type { uint8_t state; }; static inline void construct_value_type(value_type* pDst, const Key& k, const Value& v) { if (BASISU_IS_BITWISE_COPYABLE(Key)) memcpy(&pDst->first, &k, sizeof(Key)); else scalar_type::construct(&pDst->first, k); if (BASISU_IS_BITWISE_COPYABLE(Value)) memcpy(&pDst->second, &v, sizeof(Value)); else scalar_type::construct(&pDst->second, v); } static inline void construct_value_type(value_type* pDst, const value_type* pSrc) { if ((BASISU_IS_BITWISE_COPYABLE(Key)) && (BASISU_IS_BITWISE_COPYABLE(Value))) { memcpy(pDst, pSrc, sizeof(value_type)); } else { if (BASISU_IS_BITWISE_COPYABLE(Key)) memcpy(&pDst->first, &pSrc->first, sizeof(Key)); else scalar_type::construct(&pDst->first, pSrc->first); if (BASISU_IS_BITWISE_COPYABLE(Value)) memcpy(&pDst->second, &pSrc->second, sizeof(Value)); else scalar_type::construct(&pDst->second, pSrc->second); } } static inline void destruct_value_type(value_type* p) { scalar_type::destruct(&p->first); scalar_type::destruct(&p->second); } // Moves *pSrc to *pDst efficiently. // pDst should NOT be constructed on entry. static inline void move_node(node* pDst, node* pSrc, bool update_src_state = true) { assert(!pDst->state); if (BASISU_IS_BITWISE_COPYABLE_OR_MOVABLE(Key) && BASISU_IS_BITWISE_COPYABLE_OR_MOVABLE(Value)) { memcpy(pDst, pSrc, sizeof(node)); } else { if (BASISU_IS_BITWISE_COPYABLE_OR_MOVABLE(Key)) memcpy(&pDst->first, &pSrc->first, sizeof(Key)); else { scalar_type::construct(&pDst->first, pSrc->first); scalar_type::destruct(&pSrc->first); } if (BASISU_IS_BITWISE_COPYABLE_OR_MOVABLE(Value)) memcpy(&pDst->second, &pSrc->second, sizeof(Value)); else { scalar_type::construct(&pDst->second, pSrc->second); scalar_type::destruct(&pSrc->second); } pDst->state = cStateValid; } if (update_src_state) pSrc->state = cStateInvalid; } struct raw_node { inline raw_node() { node* p = reinterpret_cast(this); p->state = cStateInvalid; } inline ~raw_node() { node* p = reinterpret_cast(this); if (p->state) hash_map_type::destruct_value_type(p); } inline raw_node(const raw_node& other) { node* pDst = reinterpret_cast(this); const node* pSrc = reinterpret_cast(&other); if (pSrc->state) { hash_map_type::construct_value_type(pDst, pSrc); pDst->state = cStateValid; } else pDst->state = cStateInvalid; } inline raw_node& operator= (const raw_node& rhs) { if (this == &rhs) return *this; node* pDst = reinterpret_cast(this); const node* pSrc = reinterpret_cast(&rhs); if (pSrc->state) { if (pDst->state) { pDst->first = pSrc->first; pDst->second = pSrc->second; } else { hash_map_type::construct_value_type(pDst, pSrc); pDst->state = cStateValid; } } else if (pDst->state) { hash_map_type::destruct_value_type(pDst); pDst->state = cStateInvalid; } return *this; } uint8_t m_bits[sizeof(node)]; }; typedef basisu::vector node_vector; node_vector m_values; uint32_t m_hash_shift; Hasher m_hasher; Equals m_equals; uint32_t m_num_valid; uint32_t m_grow_threshold; inline uint32_t hash_key(const Key& k) const { assert((1U << (32U - m_hash_shift)) == m_values.size()); uint32_t hash = static_cast(m_hasher(k)); // Fibonacci hashing hash = (2654435769U * hash) >> m_hash_shift; assert(hash < m_values.size()); return hash; } inline const node& get_node(uint32_t index) const { return *reinterpret_cast(&m_values[index]); } inline node& get_node(uint32_t index) { return *reinterpret_cast(&m_values[index]); } inline state get_node_state(uint32_t index) const { return static_cast(get_node(index).state); } inline void set_node_state(uint32_t index, bool valid) { get_node(index).state = valid; } inline void grow() { uint64_t n = m_values.size() * 3ULL; // was * 2 if (!helpers::is_power_of_2(n)) n = helpers::next_pow2(n); if (n > 0x80000000UL) n = 0x80000000UL; rehash(helpers::maximum(cMinHashSize, (uint32_t)n)); } inline void rehash(uint32_t new_hash_size) { assert(new_hash_size >= m_num_valid); assert(helpers::is_power_of_2(new_hash_size)); if ((new_hash_size < m_num_valid) || (new_hash_size == m_values.size())) return; hash_map new_map; new_map.m_values.resize(new_hash_size); new_map.m_hash_shift = 32U - helpers::floor_log2i(new_hash_size); assert(new_hash_size == (1U << (32U - new_map.m_hash_shift))); new_map.m_grow_threshold = UINT_MAX; node* pNode = reinterpret_cast(m_values.begin()); node* pNode_end = pNode + m_values.size(); while (pNode != pNode_end) { if (pNode->state) { new_map.move_into(pNode); if (new_map.m_num_valid == m_num_valid) break; } pNode++; } new_map.m_grow_threshold = (new_hash_size + 1U) >> 1U; m_values.clear_no_destruction(); m_hash_shift = 32; swap(new_map); } inline uint32_t find_next(uint32_t index) const { index++; if (index >= m_values.size()) return index; const node* pNode = &get_node(index); for (; ; ) { if (pNode->state) break; if (++index >= m_values.size()) break; pNode++; } return index; } inline uint32_t find_index(const Key& k) const { if (m_num_valid) { uint32_t index = hash_key(k); const node* pNode = &get_node(index); if (pNode->state) { if (m_equals(pNode->first, k)) return index; const uint32_t orig_index = index; for (; ; ) { if (!index) { index = m_values.size() - 1; pNode = &get_node(index); } else { index--; pNode--; } if (index == orig_index) break; if (!pNode->state) break; if (m_equals(pNode->first, k)) return index; } } } return m_values.size(); } inline bool insert_no_grow(insert_result& result, const Key& k, const Value& v = Value()) { if (!m_values.size()) return false; uint32_t index = hash_key(k); node* pNode = &get_node(index); if (pNode->state) { if (m_equals(pNode->first, k)) { result.first = iterator(*this, index); result.second = false; return true; } const uint32_t orig_index = index; for (; ; ) { if (!index) { index = m_values.size() - 1; pNode = &get_node(index); } else { index--; pNode--; } if (orig_index == index) return false; if (!pNode->state) break; if (m_equals(pNode->first, k)) { result.first = iterator(*this, index); result.second = false; return true; } } } if (m_num_valid >= m_grow_threshold) return false; construct_value_type(pNode, k, v); pNode->state = cStateValid; m_num_valid++; assert(m_num_valid <= m_values.size()); result.first = iterator(*this, index); result.second = true; return true; } inline void move_into(node* pNode) { uint32_t index = hash_key(pNode->first); node* pDst_node = &get_node(index); if (pDst_node->state) { const uint32_t orig_index = index; for (; ; ) { if (!index) { index = m_values.size() - 1; pDst_node = &get_node(index); } else { index--; pDst_node--; } if (index == orig_index) { assert(false); return; } if (!pDst_node->state) break; } } move_node(pDst_node, pNode, false); m_num_valid++; } }; template struct bitwise_movable< hash_map > { enum { cFlag = true }; }; #if BASISU_HASHMAP_TEST extern void hash_map_test(); #endif } // namespace basisu namespace std { template inline void swap(basisu::vector& a, basisu::vector& b) { a.swap(b); } template inline void swap(basisu::hash_map& a, basisu::hash_map& b) { a.swap(b); } } // namespace std