// Copyright 2023 Google LLC // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. syntax = "proto3"; package google.cloud.aiplatform.v1beta1; import "google/api/field_behavior.proto"; import "google/api/resource.proto"; import "google/protobuf/duration.proto"; import "google/protobuf/struct.proto"; import "google/protobuf/timestamp.proto"; option csharp_namespace = "Google.Cloud.AIPlatform.V1Beta1"; option go_package = "cloud.google.com/go/aiplatform/apiv1beta1/aiplatformpb;aiplatformpb"; option java_multiple_files = true; option java_outer_classname = "StudyProto"; option java_package = "com.google.cloud.aiplatform.v1beta1"; option php_namespace = "Google\\Cloud\\AIPlatform\\V1beta1"; option ruby_package = "Google::Cloud::AIPlatform::V1beta1"; // A message representing a Study. message Study { option (google.api.resource) = { type: "aiplatform.googleapis.com/Study" pattern: "projects/{project}/locations/{location}/studies/{study}" }; // Describes the Study state. enum State { // The study state is unspecified. STATE_UNSPECIFIED = 0; // The study is active. ACTIVE = 1; // The study is stopped due to an internal error. INACTIVE = 2; // The study is done when the service exhausts the parameter search space // or max_trial_count is reached. COMPLETED = 3; } // Output only. The name of a study. The study's globally unique identifier. // Format: `projects/{project}/locations/{location}/studies/{study}` string name = 1 [(google.api.field_behavior) = OUTPUT_ONLY]; // Required. Describes the Study, default value is empty string. string display_name = 2 [(google.api.field_behavior) = REQUIRED]; // Required. Configuration of the Study. StudySpec study_spec = 3 [(google.api.field_behavior) = REQUIRED]; // Output only. The detailed state of a Study. State state = 4 [(google.api.field_behavior) = OUTPUT_ONLY]; // Output only. Time at which the study was created. google.protobuf.Timestamp create_time = 5 [(google.api.field_behavior) = OUTPUT_ONLY]; // Output only. A human readable reason why the Study is inactive. // This should be empty if a study is ACTIVE or COMPLETED. string inactive_reason = 6 [(google.api.field_behavior) = OUTPUT_ONLY]; } // A message representing a Trial. A Trial contains a unique set of Parameters // that has been or will be evaluated, along with the objective metrics got by // running the Trial. message Trial { option (google.api.resource) = { type: "aiplatform.googleapis.com/Trial" pattern: "projects/{project}/locations/{location}/studies/{study}/trials/{trial}" }; // A message representing a parameter to be tuned. message Parameter { // Output only. The ID of the parameter. The parameter should be defined in // [StudySpec's // Parameters][google.cloud.aiplatform.v1beta1.StudySpec.parameters]. string parameter_id = 1 [(google.api.field_behavior) = OUTPUT_ONLY]; // Output only. The value of the parameter. // `number_value` will be set if a parameter defined in StudySpec is // in type 'INTEGER', 'DOUBLE' or 'DISCRETE'. // `string_value` will be set if a parameter defined in StudySpec is // in type 'CATEGORICAL'. google.protobuf.Value value = 2 [(google.api.field_behavior) = OUTPUT_ONLY]; } // Describes a Trial state. enum State { // The Trial state is unspecified. STATE_UNSPECIFIED = 0; // Indicates that a specific Trial has been requested, but it has not yet // been suggested by the service. REQUESTED = 1; // Indicates that the Trial has been suggested. ACTIVE = 2; // Indicates that the Trial should stop according to the service. STOPPING = 3; // Indicates that the Trial is completed successfully. SUCCEEDED = 4; // Indicates that the Trial should not be attempted again. // The service will set a Trial to INFEASIBLE when it's done but missing // the final_measurement. INFEASIBLE = 5; } // Output only. Resource name of the Trial assigned by the service. string name = 1 [(google.api.field_behavior) = OUTPUT_ONLY]; // Output only. The identifier of the Trial assigned by the service. string id = 2 [(google.api.field_behavior) = OUTPUT_ONLY]; // Output only. The detailed state of the Trial. State state = 3 [(google.api.field_behavior) = OUTPUT_ONLY]; // Output only. The parameters of the Trial. repeated Parameter parameters = 4 [(google.api.field_behavior) = OUTPUT_ONLY]; // Output only. The final measurement containing the objective value. Measurement final_measurement = 5 [(google.api.field_behavior) = OUTPUT_ONLY]; // Output only. A list of measurements that are strictly lexicographically // ordered by their induced tuples (steps, elapsed_duration). // These are used for early stopping computations. repeated Measurement measurements = 6 [(google.api.field_behavior) = OUTPUT_ONLY]; // Output only. Time when the Trial was started. google.protobuf.Timestamp start_time = 7 [(google.api.field_behavior) = OUTPUT_ONLY]; // Output only. Time when the Trial's status changed to `SUCCEEDED` or // `INFEASIBLE`. google.protobuf.Timestamp end_time = 8 [(google.api.field_behavior) = OUTPUT_ONLY]; // Output only. The identifier of the client that originally requested this // Trial. Each client is identified by a unique client_id. When a client asks // for a suggestion, Vertex AI Vizier will assign it a Trial. The client // should evaluate the Trial, complete it, and report back to Vertex AI // Vizier. If suggestion is asked again by same client_id before the Trial is // completed, the same Trial will be returned. Multiple clients with // different client_ids can ask for suggestions simultaneously, each of them // will get their own Trial. string client_id = 9 [(google.api.field_behavior) = OUTPUT_ONLY]; // Output only. A human readable string describing why the Trial is // infeasible. This is set only if Trial state is `INFEASIBLE`. string infeasible_reason = 10 [(google.api.field_behavior) = OUTPUT_ONLY]; // Output only. The CustomJob name linked to the Trial. // It's set for a HyperparameterTuningJob's Trial. string custom_job = 11 [ (google.api.field_behavior) = OUTPUT_ONLY, (google.api.resource_reference) = { type: "aiplatform.googleapis.com/CustomJob" } ]; // Output only. URIs for accessing [interactive // shells](https://cloud.google.com/vertex-ai/docs/training/monitor-debug-interactive-shell) // (one URI for each training node). Only available if this trial is part of // a // [HyperparameterTuningJob][google.cloud.aiplatform.v1beta1.HyperparameterTuningJob] // and the job's // [trial_job_spec.enable_web_access][google.cloud.aiplatform.v1beta1.CustomJobSpec.enable_web_access] // field is `true`. // // The keys are names of each node used for the trial; for example, // `workerpool0-0` for the primary node, `workerpool1-0` for the first node in // the second worker pool, and `workerpool1-1` for the second node in the // second worker pool. // // The values are the URIs for each node's interactive shell. map web_access_uris = 12 [(google.api.field_behavior) = OUTPUT_ONLY]; } // Represents specification of a Study. message StudySpec { // Represents a metric to optimize. message MetricSpec { // Used in safe optimization to specify threshold levels and risk tolerance. message SafetyMetricConfig { // Safety threshold (boundary value between safe and unsafe). NOTE that if // you leave SafetyMetricConfig unset, a default value of 0 will be used. double safety_threshold = 1; // Desired minimum fraction of safe trials (over total number of trials) // that should be targeted by the algorithm at any time during the // study (best effort). This should be between 0.0 and 1.0 and a value of // 0.0 means that there is no minimum and an algorithm proceeds without // targeting any specific fraction. A value of 1.0 means that the // algorithm attempts to only Suggest safe Trials. optional double desired_min_safe_trials_fraction = 2; } // The available types of optimization goals. enum GoalType { // Goal Type will default to maximize. GOAL_TYPE_UNSPECIFIED = 0; // Maximize the goal metric. MAXIMIZE = 1; // Minimize the goal metric. MINIMIZE = 2; } // Required. The ID of the metric. Must not contain whitespaces and must be // unique amongst all MetricSpecs. string metric_id = 1 [(google.api.field_behavior) = REQUIRED]; // Required. The optimization goal of the metric. GoalType goal = 2 [(google.api.field_behavior) = REQUIRED]; // Used for safe search. In the case, the metric will be a safety // metric. You must provide a separate metric for objective metric. optional SafetyMetricConfig safety_config = 3; } // Represents a single parameter to optimize. message ParameterSpec { // Value specification for a parameter in `DOUBLE` type. message DoubleValueSpec { // Required. Inclusive minimum value of the parameter. double min_value = 1 [(google.api.field_behavior) = REQUIRED]; // Required. Inclusive maximum value of the parameter. double max_value = 2 [(google.api.field_behavior) = REQUIRED]; // A default value for a `DOUBLE` parameter that is assumed to be a // relatively good starting point. Unset value signals that there is no // offered starting point. // // Currently only supported by the Vertex AI Vizier service. Not supported // by HyperparameterTuningJob or TrainingPipeline. optional double default_value = 4; } // Value specification for a parameter in `INTEGER` type. message IntegerValueSpec { // Required. Inclusive minimum value of the parameter. int64 min_value = 1 [(google.api.field_behavior) = REQUIRED]; // Required. Inclusive maximum value of the parameter. int64 max_value = 2 [(google.api.field_behavior) = REQUIRED]; // A default value for an `INTEGER` parameter that is assumed to be a // relatively good starting point. Unset value signals that there is no // offered starting point. // // Currently only supported by the Vertex AI Vizier service. Not supported // by HyperparameterTuningJob or TrainingPipeline. optional int64 default_value = 4; } // Value specification for a parameter in `CATEGORICAL` type. message CategoricalValueSpec { // Required. The list of possible categories. repeated string values = 1 [(google.api.field_behavior) = REQUIRED]; // A default value for a `CATEGORICAL` parameter that is assumed to be a // relatively good starting point. Unset value signals that there is no // offered starting point. // // Currently only supported by the Vertex AI Vizier service. Not supported // by HyperparameterTuningJob or TrainingPipeline. optional string default_value = 3; } // Value specification for a parameter in `DISCRETE` type. message DiscreteValueSpec { // Required. A list of possible values. // The list should be in increasing order and at least 1e-10 apart. // For instance, this parameter might have possible settings of 1.5, 2.5, // and 4.0. This list should not contain more than 1,000 values. repeated double values = 1 [(google.api.field_behavior) = REQUIRED]; // A default value for a `DISCRETE` parameter that is assumed to be a // relatively good starting point. Unset value signals that there is no // offered starting point. It automatically rounds to the // nearest feasible discrete point. // // Currently only supported by the Vertex AI Vizier service. Not supported // by HyperparameterTuningJob or TrainingPipeline. optional double default_value = 3; } // Represents a parameter spec with condition from its parent parameter. message ConditionalParameterSpec { // Represents the spec to match discrete values from parent parameter. message DiscreteValueCondition { // Required. Matches values of the parent parameter of 'DISCRETE' type. // All values must exist in `discrete_value_spec` of parent parameter. // // The Epsilon of the value matching is 1e-10. repeated double values = 1 [(google.api.field_behavior) = REQUIRED]; } // Represents the spec to match integer values from parent parameter. message IntValueCondition { // Required. Matches values of the parent parameter of 'INTEGER' type. // All values must lie in `integer_value_spec` of parent parameter. repeated int64 values = 1 [(google.api.field_behavior) = REQUIRED]; } // Represents the spec to match categorical values from parent parameter. message CategoricalValueCondition { // Required. Matches values of the parent parameter of 'CATEGORICAL' // type. All values must exist in `categorical_value_spec` of parent // parameter. repeated string values = 1 [(google.api.field_behavior) = REQUIRED]; } // A set of parameter values from the parent ParameterSpec's feasible // space. oneof parent_value_condition { // The spec for matching values from a parent parameter of // `DISCRETE` type. DiscreteValueCondition parent_discrete_values = 2; // The spec for matching values from a parent parameter of `INTEGER` // type. IntValueCondition parent_int_values = 3; // The spec for matching values from a parent parameter of // `CATEGORICAL` type. CategoricalValueCondition parent_categorical_values = 4; } // Required. The spec for a conditional parameter. ParameterSpec parameter_spec = 1 [(google.api.field_behavior) = REQUIRED]; } // The type of scaling that should be applied to this parameter. enum ScaleType { // By default, no scaling is applied. SCALE_TYPE_UNSPECIFIED = 0; // Scales the feasible space to (0, 1) linearly. UNIT_LINEAR_SCALE = 1; // Scales the feasible space logarithmically to (0, 1). The entire // feasible space must be strictly positive. UNIT_LOG_SCALE = 2; // Scales the feasible space "reverse" logarithmically to (0, 1). The // result is that values close to the top of the feasible space are spread // out more than points near the bottom. The entire feasible space must be // strictly positive. UNIT_REVERSE_LOG_SCALE = 3; } oneof parameter_value_spec { // The value spec for a 'DOUBLE' parameter. DoubleValueSpec double_value_spec = 2; // The value spec for an 'INTEGER' parameter. IntegerValueSpec integer_value_spec = 3; // The value spec for a 'CATEGORICAL' parameter. CategoricalValueSpec categorical_value_spec = 4; // The value spec for a 'DISCRETE' parameter. DiscreteValueSpec discrete_value_spec = 5; } // Required. The ID of the parameter. Must not contain whitespaces and must // be unique amongst all ParameterSpecs. string parameter_id = 1 [(google.api.field_behavior) = REQUIRED]; // How the parameter should be scaled. // Leave unset for `CATEGORICAL` parameters. ScaleType scale_type = 6; // A conditional parameter node is active if the parameter's value matches // the conditional node's parent_value_condition. // // If two items in conditional_parameter_specs have the same name, they // must have disjoint parent_value_condition. repeated ConditionalParameterSpec conditional_parameter_specs = 10; } // The decay curve automated stopping rule builds a Gaussian Process // Regressor to predict the final objective value of a Trial based on the // already completed Trials and the intermediate measurements of the current // Trial. Early stopping is requested for the current Trial if there is very // low probability to exceed the optimal value found so far. message DecayCurveAutomatedStoppingSpec { // True if // [Measurement.elapsed_duration][google.cloud.aiplatform.v1beta1.Measurement.elapsed_duration] // is used as the x-axis of each Trials Decay Curve. Otherwise, // [Measurement.step_count][google.cloud.aiplatform.v1beta1.Measurement.step_count] // will be used as the x-axis. bool use_elapsed_duration = 1; } // The median automated stopping rule stops a pending Trial if the Trial's // best objective_value is strictly below the median 'performance' of all // completed Trials reported up to the Trial's last measurement. // Currently, 'performance' refers to the running average of the objective // values reported by the Trial in each measurement. message MedianAutomatedStoppingSpec { // True if median automated stopping rule applies on // [Measurement.elapsed_duration][google.cloud.aiplatform.v1beta1.Measurement.elapsed_duration]. // It means that elapsed_duration field of latest measurement of current // Trial is used to compute median objective value for each completed // Trials. bool use_elapsed_duration = 1; } // Configuration for ConvexAutomatedStoppingSpec. // When there are enough completed trials (configured by // min_measurement_count), for pending trials with enough measurements and // steps, the policy first computes an overestimate of the objective value at // max_num_steps according to the slope of the incomplete objective value // curve. No prediction can be made if the curve is completely flat. If the // overestimation is worse than the best objective value of the completed // trials, this pending trial will be early-stopped, but a last measurement // will be added to the pending trial with max_num_steps and predicted // objective value from the autoregression model. message ConvexAutomatedStoppingSpec { // Steps used in predicting the final objective for early stopped trials. In // general, it's set to be the same as the defined steps in training / // tuning. If not defined, it will learn it from the completed trials. When // use_steps is false, this field is set to the maximum elapsed seconds. int64 max_step_count = 1; // Minimum number of steps for a trial to complete. Trials which do not have // a measurement with step_count > min_step_count won't be considered for // early stopping. It's ok to set it to 0, and a trial can be early stopped // at any stage. By default, min_step_count is set to be one-tenth of the // max_step_count. // When use_elapsed_duration is true, this field is set to the minimum // elapsed seconds. int64 min_step_count = 2; // The minimal number of measurements in a Trial. Early-stopping checks // will not trigger if less than min_measurement_count+1 completed trials or // pending trials with less than min_measurement_count measurements. If not // defined, the default value is 5. int64 min_measurement_count = 3; // The hyper-parameter name used in the tuning job that stands for learning // rate. Leave it blank if learning rate is not in a parameter in tuning. // The learning_rate is used to estimate the objective value of the ongoing // trial. string learning_rate_parameter_name = 4; // This bool determines whether or not the rule is applied based on // elapsed_secs or steps. If use_elapsed_duration==false, the early stopping // decision is made according to the predicted objective values according to // the target steps. If use_elapsed_duration==true, elapsed_secs is used // instead of steps. Also, in this case, the parameters max_num_steps and // min_num_steps are overloaded to contain max_elapsed_seconds and // min_elapsed_seconds. bool use_elapsed_duration = 5; // ConvexAutomatedStoppingSpec by default only updates the trials that needs // to be early stopped using a newly trained auto-regressive model. When // this flag is set to True, all stopped trials from the beginning are // potentially updated in terms of their `final_measurement`. Also, note // that the training logic of autoregressive models is different in this // case. Enabling this option has shown better results and this may be the // default option in the future. optional bool update_all_stopped_trials = 6; } // Configuration for ConvexStopPolicy. message ConvexStopConfig { option deprecated = true; // Steps used in predicting the final objective for early stopped trials. In // general, it's set to be the same as the defined steps in training / // tuning. When use_steps is false, this field is set to the maximum elapsed // seconds. int64 max_num_steps = 1; // Minimum number of steps for a trial to complete. Trials which do not have // a measurement with num_steps > min_num_steps won't be considered for // early stopping. It's ok to set it to 0, and a trial can be early stopped // at any stage. By default, min_num_steps is set to be one-tenth of the // max_num_steps. // When use_steps is false, this field is set to the minimum elapsed // seconds. int64 min_num_steps = 2; // The number of Trial measurements used in autoregressive model for // value prediction. A trial won't be considered early stopping if has fewer // measurement points. int64 autoregressive_order = 3; // The hyper-parameter name used in the tuning job that stands for learning // rate. Leave it blank if learning rate is not in a parameter in tuning. // The learning_rate is used to estimate the objective value of the ongoing // trial. string learning_rate_parameter_name = 4; // This bool determines whether or not the rule is applied based on // elapsed_secs or steps. If use_seconds==false, the early stopping decision // is made according to the predicted objective values according to the // target steps. If use_seconds==true, elapsed_secs is used instead of // steps. Also, in this case, the parameters max_num_steps and min_num_steps // are overloaded to contain max_elapsed_seconds and min_elapsed_seconds. bool use_seconds = 5; } // This contains flag for manually disabling transfer learning for a study. // The names of prior studies being used for transfer learning (if any) // are also listed here. message TransferLearningConfig { // Flag to to manually prevent vizier from using transfer learning on a // new study. Otherwise, vizier will automatically determine whether or not // to use transfer learning. bool disable_transfer_learning = 1; // Output only. Names of previously completed studies repeated string prior_study_names = 2 [(google.api.field_behavior) = OUTPUT_ONLY]; } // The available search algorithms for the Study. enum Algorithm { // The default algorithm used by Vertex AI for [hyperparameter // tuning](https://cloud.google.com/vertex-ai/docs/training/hyperparameter-tuning-overview) // and [Vertex AI Vizier](https://cloud.google.com/vertex-ai/docs/vizier). ALGORITHM_UNSPECIFIED = 0; // Simple grid search within the feasible space. To use grid search, // all parameters must be `INTEGER`, `CATEGORICAL`, or `DISCRETE`. GRID_SEARCH = 2; // Simple random search within the feasible space. RANDOM_SEARCH = 3; } // Describes the noise level of the repeated observations. // // "Noisy" means that the repeated observations with the same Trial parameters // may lead to different metric evaluations. enum ObservationNoise { // The default noise level chosen by Vertex AI. OBSERVATION_NOISE_UNSPECIFIED = 0; // Vertex AI assumes that the objective function is (nearly) // perfectly reproducible, and will never repeat the same Trial // parameters. LOW = 1; // Vertex AI will estimate the amount of noise in metric // evaluations, it may repeat the same Trial parameters more than once. HIGH = 2; } // This indicates which measurement to use if/when the service automatically // selects the final measurement from previously reported intermediate // measurements. Choose this based on two considerations: // A) Do you expect your measurements to monotonically improve? // If so, choose LAST_MEASUREMENT. On the other hand, if you're in a // situation where your system can "over-train" and you expect the // performance to get better for a while but then start declining, // choose BEST_MEASUREMENT. // B) Are your measurements significantly noisy and/or irreproducible? // If so, BEST_MEASUREMENT will tend to be over-optimistic, and it // may be better to choose LAST_MEASUREMENT. // If both or neither of (A) and (B) apply, it doesn't matter which // selection type is chosen. enum MeasurementSelectionType { // Will be treated as LAST_MEASUREMENT. MEASUREMENT_SELECTION_TYPE_UNSPECIFIED = 0; // Use the last measurement reported. LAST_MEASUREMENT = 1; // Use the best measurement reported. BEST_MEASUREMENT = 2; } oneof automated_stopping_spec { // The automated early stopping spec using decay curve rule. DecayCurveAutomatedStoppingSpec decay_curve_stopping_spec = 4; // The automated early stopping spec using median rule. MedianAutomatedStoppingSpec median_automated_stopping_spec = 5; // Deprecated. // The automated early stopping using convex stopping rule. ConvexStopConfig convex_stop_config = 8 [deprecated = true]; // The automated early stopping spec using convex stopping rule. ConvexAutomatedStoppingSpec convex_automated_stopping_spec = 9; } // Required. Metric specs for the Study. repeated MetricSpec metrics = 1 [(google.api.field_behavior) = REQUIRED]; // Required. The set of parameters to tune. repeated ParameterSpec parameters = 2 [(google.api.field_behavior) = REQUIRED]; // The search algorithm specified for the Study. Algorithm algorithm = 3; // The observation noise level of the study. // Currently only supported by the Vertex AI Vizier service. Not supported by // HyperparameterTuningJob or TrainingPipeline. ObservationNoise observation_noise = 6; // Describe which measurement selection type will be used MeasurementSelectionType measurement_selection_type = 7; // The configuration info/options for transfer learning. Currently supported // for Vertex AI Vizier service, not HyperParameterTuningJob TransferLearningConfig transfer_learning_config = 10; } // A message representing a Measurement of a Trial. A Measurement contains // the Metrics got by executing a Trial using suggested hyperparameter // values. message Measurement { // A message representing a metric in the measurement. message Metric { // Output only. The ID of the Metric. The Metric should be defined in // [StudySpec's Metrics][google.cloud.aiplatform.v1beta1.StudySpec.metrics]. string metric_id = 1 [(google.api.field_behavior) = OUTPUT_ONLY]; // Output only. The value for this metric. double value = 2 [(google.api.field_behavior) = OUTPUT_ONLY]; } // Output only. Time that the Trial has been running at the point of this // Measurement. google.protobuf.Duration elapsed_duration = 1 [(google.api.field_behavior) = OUTPUT_ONLY]; // Output only. The number of steps the machine learning model has been // trained for. Must be non-negative. int64 step_count = 2 [(google.api.field_behavior) = OUTPUT_ONLY]; // Output only. A list of metrics got by evaluating the objective functions // using suggested Parameter values. repeated Metric metrics = 3 [(google.api.field_behavior) = OUTPUT_ONLY]; }