# bfes ## Brute force embedding search Given a set of embeddings, and a query embedding, this algorithm searches for the nearest embeddings for each query. As it is a brute force search, you don't need to regenerate the index and can add new embeddings to the index at any time. The algorithm is O(n) in time and space. ## Performance Time to brute force search 100,000 512-dimensional embeddings: Windows 11, AMD Ryzen 9 5950x @ 3.4 GHz test tests::bench_cosine_similarity ... bench: 20,018,120 ns/iter (+/- 2,042,521) Mac OS X, M1 Max MacbookPro18,4 test tests::bench_cosine_similarity ... bench: 11,302,216 ns/iter (+/- 185,505) Mac OS X, M1 Macmini9,1 test tests::bench_cosine_similarity ... bench: 9,559,170 ns/iter (+/- 592,620) Ubuntu 18.04, AWS c6i.large test tests::bench_cosine_similarity ... bench: 25,452,715 ns/iter (+/- 848,001) Ubuntu 22.04, AWS c6a.large test tests::bench_cosine_similarity ... bench: 17,306,132 ns/iter (+/- 78,319) Ubuntu 22.04, AWS c6g.medium test tests::bench_cosine_similarity ... bench: 30,262,326 ns/iter (+/- 64,509)