// SPDX-License-Identifier: Apache-2.0 // ---------------------------------------------------------------------------- // Copyright 2019-2023 Arm Limited // // Licensed under the Apache License, Version 2.0 (the "License"); you may not // use this file except in compliance with the License. You may obtain a copy // of the License at: // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the // License for the specific language governing permissions and limitations // under the License. // ---------------------------------------------------------------------------- /** * @brief 4x32-bit vectors, implemented using Armv8-A NEON. * * This module implements 4-wide 32-bit float, int, and mask vectors for * Armv8-A NEON. * * There is a baseline level of functionality provided by all vector widths and * implementations. This is implemented using identical function signatures, * modulo data type, so we can use them as substitutable implementations in VLA * code. * * The 4-wide vectors are also used as a fixed-width type, and significantly * extend the functionality above that available to VLA code. */ #ifndef ASTC_VECMATHLIB_NEON_4_H_INCLUDED #define ASTC_VECMATHLIB_NEON_4_H_INCLUDED #ifndef ASTCENC_SIMD_INLINE #error "Include astcenc_vecmathlib.h, do not include directly" #endif #include #include // ============================================================================ // vfloat4 data type // ============================================================================ /** * @brief Data type for 4-wide floats. */ struct vfloat4 { /** * @brief Construct from zero-initialized value. */ ASTCENC_SIMD_INLINE vfloat4() = default; /** * @brief Construct from 4 values loaded from an unaligned address. * * Consider using loada() which is better with vectors if data is aligned * to vector length. */ ASTCENC_SIMD_INLINE explicit vfloat4(const float *p) { m = vld1q_f32(p); } /** * @brief Construct from 1 scalar value replicated across all lanes. * * Consider using zero() for constexpr zeros. */ ASTCENC_SIMD_INLINE explicit vfloat4(float a) { m = vdupq_n_f32(a); } /** * @brief Construct from 4 scalar values. * * The value of @c a is stored to lane 0 (LSB) in the SIMD register. */ ASTCENC_SIMD_INLINE explicit vfloat4(float a, float b, float c, float d) { float v[4] { a, b, c, d }; m = vld1q_f32(v); } /** * @brief Construct from an existing SIMD register. */ ASTCENC_SIMD_INLINE explicit vfloat4(float32x4_t a) { m = a; } /** * @brief Get the scalar value of a single lane. */ template ASTCENC_SIMD_INLINE float lane() const { return vgetq_lane_f32(m, l); } /** * @brief Set the scalar value of a single lane. */ template ASTCENC_SIMD_INLINE void set_lane(float a) { m = vsetq_lane_f32(a, m, l); } /** * @brief Factory that returns a vector of zeros. */ static ASTCENC_SIMD_INLINE vfloat4 zero() { return vfloat4(vdupq_n_f32(0.0f)); } /** * @brief Factory that returns a replicated scalar loaded from memory. */ static ASTCENC_SIMD_INLINE vfloat4 load1(const float* p) { return vfloat4(vld1q_dup_f32(p)); } /** * @brief Factory that returns a vector loaded from 16B aligned memory. */ static ASTCENC_SIMD_INLINE vfloat4 loada(const float* p) { return vfloat4(vld1q_f32(p)); } /** * @brief Factory that returns a vector containing the lane IDs. */ static ASTCENC_SIMD_INLINE vfloat4 lane_id() { alignas(16) float data[4] { 0.0f, 1.0f, 2.0f, 3.0f }; return vfloat4(vld1q_f32(data)); } /** * @brief Return a swizzled float 2. */ template ASTCENC_SIMD_INLINE vfloat4 swz() const { return vfloat4(lane(), lane(), 0.0f, 0.0f); } /** * @brief Return a swizzled float 3. */ template ASTCENC_SIMD_INLINE vfloat4 swz() const { return vfloat4(lane(), lane(), lane(), 0.0f); } /** * @brief Return a swizzled float 4. */ template ASTCENC_SIMD_INLINE vfloat4 swz() const { return vfloat4(lane(), lane(), lane(), lane()); } /** * @brief The vector ... */ float32x4_t m; }; // ============================================================================ // vint4 data type // ============================================================================ /** * @brief Data type for 4-wide ints. */ struct vint4 { /** * @brief Construct from zero-initialized value. */ ASTCENC_SIMD_INLINE vint4() = default; /** * @brief Construct from 4 values loaded from an unaligned address. * * Consider using loada() which is better with vectors if data is aligned * to vector length. */ ASTCENC_SIMD_INLINE explicit vint4(const int *p) { m = vld1q_s32(p); } /** * @brief Construct from 4 uint8_t loaded from an unaligned address. */ ASTCENC_SIMD_INLINE explicit vint4(const uint8_t *p) { // Cast is safe - NEON loads are allowed to be unaligned uint32x2_t t8 = vld1_dup_u32(reinterpret_cast(p)); uint16x4_t t16 = vget_low_u16(vmovl_u8(vreinterpret_u8_u32(t8))); m = vreinterpretq_s32_u32(vmovl_u16(t16)); } /** * @brief Construct from 1 scalar value replicated across all lanes. * * Consider using vfloat4::zero() for constexpr zeros. */ ASTCENC_SIMD_INLINE explicit vint4(int a) { m = vdupq_n_s32(a); } /** * @brief Construct from 4 scalar values. * * The value of @c a is stored to lane 0 (LSB) in the SIMD register. */ ASTCENC_SIMD_INLINE explicit vint4(int a, int b, int c, int d) { int v[4] { a, b, c, d }; m = vld1q_s32(v); } /** * @brief Construct from an existing SIMD register. */ ASTCENC_SIMD_INLINE explicit vint4(int32x4_t a) { m = a; } /** * @brief Get the scalar from a single lane. */ template ASTCENC_SIMD_INLINE int lane() const { return vgetq_lane_s32(m, l); } /** * @brief Set the scalar value of a single lane. */ template ASTCENC_SIMD_INLINE void set_lane(int a) { m = vsetq_lane_s32(a, m, l); } /** * @brief Factory that returns a vector of zeros. */ static ASTCENC_SIMD_INLINE vint4 zero() { return vint4(0); } /** * @brief Factory that returns a replicated scalar loaded from memory. */ static ASTCENC_SIMD_INLINE vint4 load1(const int* p) { return vint4(*p); } /** * @brief Factory that returns a vector loaded from unaligned memory. */ static ASTCENC_SIMD_INLINE vint4 load(const uint8_t* p) { vint4 data; std::memcpy(&data.m, p, 4 * sizeof(int)); return data; } /** * @brief Factory that returns a vector loaded from 16B aligned memory. */ static ASTCENC_SIMD_INLINE vint4 loada(const int* p) { return vint4(p); } /** * @brief Factory that returns a vector containing the lane IDs. */ static ASTCENC_SIMD_INLINE vint4 lane_id() { alignas(16) static const int data[4] { 0, 1, 2, 3 }; return vint4(vld1q_s32(data)); } /** * @brief The vector ... */ int32x4_t m; }; // ============================================================================ // vmask4 data type // ============================================================================ /** * @brief Data type for 4-wide control plane masks. */ struct vmask4 { /** * @brief Construct from an existing SIMD register. */ ASTCENC_SIMD_INLINE explicit vmask4(uint32x4_t a) { m = a; } #if !defined(_MSC_VER) /** * @brief Construct from an existing SIMD register. */ ASTCENC_SIMD_INLINE explicit vmask4(int32x4_t a) { m = vreinterpretq_u32_s32(a); } #endif /** * @brief Construct from 1 scalar value. */ ASTCENC_SIMD_INLINE explicit vmask4(bool a) { m = vreinterpretq_u32_s32(vdupq_n_s32(a == true ? -1 : 0)); } /** * @brief Construct from 4 scalar values. * * The value of @c a is stored to lane 0 (LSB) in the SIMD register. */ ASTCENC_SIMD_INLINE explicit vmask4(bool a, bool b, bool c, bool d) { int v[4] { a == true ? -1 : 0, b == true ? -1 : 0, c == true ? -1 : 0, d == true ? -1 : 0 }; int32x4_t ms = vld1q_s32(v); m = vreinterpretq_u32_s32(ms); } /** * @brief Get the scalar from a single lane. */ template ASTCENC_SIMD_INLINE uint32_t lane() const { return vgetq_lane_u32(m, l); } /** * @brief The vector ... */ uint32x4_t m; }; // ============================================================================ // vmask4 operators and functions // ============================================================================ /** * @brief Overload: mask union (or). */ ASTCENC_SIMD_INLINE vmask4 operator|(vmask4 a, vmask4 b) { return vmask4(vorrq_u32(a.m, b.m)); } /** * @brief Overload: mask intersect (and). */ ASTCENC_SIMD_INLINE vmask4 operator&(vmask4 a, vmask4 b) { return vmask4(vandq_u32(a.m, b.m)); } /** * @brief Overload: mask difference (xor). */ ASTCENC_SIMD_INLINE vmask4 operator^(vmask4 a, vmask4 b) { return vmask4(veorq_u32(a.m, b.m)); } /** * @brief Overload: mask invert (not). */ ASTCENC_SIMD_INLINE vmask4 operator~(vmask4 a) { return vmask4(vmvnq_u32(a.m)); } /** * @brief Return a 4-bit mask code indicating mask status. * * bit0 = lane 0 */ ASTCENC_SIMD_INLINE unsigned int mask(vmask4 a) { static const int shifta[4] { 0, 1, 2, 3 }; static const int32x4_t shift = vld1q_s32(shifta); uint32x4_t tmp = vshrq_n_u32(a.m, 31); return vaddvq_u32(vshlq_u32(tmp, shift)); } // ============================================================================ // vint4 operators and functions // ============================================================================ /** * @brief Overload: vector by vector addition. */ ASTCENC_SIMD_INLINE vint4 operator+(vint4 a, vint4 b) { return vint4(vaddq_s32(a.m, b.m)); } /** * @brief Overload: vector by vector subtraction. */ ASTCENC_SIMD_INLINE vint4 operator-(vint4 a, vint4 b) { return vint4(vsubq_s32(a.m, b.m)); } /** * @brief Overload: vector by vector multiplication. */ ASTCENC_SIMD_INLINE vint4 operator*(vint4 a, vint4 b) { return vint4(vmulq_s32(a.m, b.m)); } /** * @brief Overload: vector bit invert. */ ASTCENC_SIMD_INLINE vint4 operator~(vint4 a) { return vint4(vmvnq_s32(a.m)); } /** * @brief Overload: vector by vector bitwise or. */ ASTCENC_SIMD_INLINE vint4 operator|(vint4 a, vint4 b) { return vint4(vorrq_s32(a.m, b.m)); } /** * @brief Overload: vector by vector bitwise and. */ ASTCENC_SIMD_INLINE vint4 operator&(vint4 a, vint4 b) { return vint4(vandq_s32(a.m, b.m)); } /** * @brief Overload: vector by vector bitwise xor. */ ASTCENC_SIMD_INLINE vint4 operator^(vint4 a, vint4 b) { return vint4(veorq_s32(a.m, b.m)); } /** * @brief Overload: vector by vector equality. */ ASTCENC_SIMD_INLINE vmask4 operator==(vint4 a, vint4 b) { return vmask4(vceqq_s32(a.m, b.m)); } /** * @brief Overload: vector by vector inequality. */ ASTCENC_SIMD_INLINE vmask4 operator!=(vint4 a, vint4 b) { return ~vmask4(vceqq_s32(a.m, b.m)); } /** * @brief Overload: vector by vector less than. */ ASTCENC_SIMD_INLINE vmask4 operator<(vint4 a, vint4 b) { return vmask4(vcltq_s32(a.m, b.m)); } /** * @brief Overload: vector by vector greater than. */ ASTCENC_SIMD_INLINE vmask4 operator>(vint4 a, vint4 b) { return vmask4(vcgtq_s32(a.m, b.m)); } /** * @brief Logical shift left. */ template ASTCENC_SIMD_INLINE vint4 lsl(vint4 a) { return vint4(vshlq_s32(a.m, vdupq_n_s32(s))); } /** * @brief Logical shift right. */ template ASTCENC_SIMD_INLINE vint4 lsr(vint4 a) { uint32x4_t ua = vreinterpretq_u32_s32(a.m); ua = vshlq_u32(ua, vdupq_n_s32(-s)); return vint4(vreinterpretq_s32_u32(ua)); } /** * @brief Arithmetic shift right. */ template ASTCENC_SIMD_INLINE vint4 asr(vint4 a) { return vint4(vshlq_s32(a.m, vdupq_n_s32(-s))); } /** * @brief Return the min vector of two vectors. */ ASTCENC_SIMD_INLINE vint4 min(vint4 a, vint4 b) { return vint4(vminq_s32(a.m, b.m)); } /** * @brief Return the max vector of two vectors. */ ASTCENC_SIMD_INLINE vint4 max(vint4 a, vint4 b) { return vint4(vmaxq_s32(a.m, b.m)); } /** * @brief Return the horizontal minimum of a vector. */ ASTCENC_SIMD_INLINE vint4 hmin(vint4 a) { return vint4(vminvq_s32(a.m)); } /** * @brief Return the horizontal maximum of a vector. */ ASTCENC_SIMD_INLINE vint4 hmax(vint4 a) { return vint4(vmaxvq_s32(a.m)); } /** * @brief Return the horizontal sum of a vector. */ ASTCENC_SIMD_INLINE int hadd_s(vint4 a) { int32x2_t t = vadd_s32(vget_high_s32(a.m), vget_low_s32(a.m)); return vget_lane_s32(vpadd_s32(t, t), 0); } /** * @brief Store a vector to a 16B aligned memory address. */ ASTCENC_SIMD_INLINE void storea(vint4 a, int* p) { vst1q_s32(p, a.m); } /** * @brief Store a vector to an unaligned memory address. */ ASTCENC_SIMD_INLINE void store(vint4 a, int* p) { vst1q_s32(p, a.m); } /** * @brief Store a vector to an unaligned memory address. */ ASTCENC_SIMD_INLINE void store(vint4 a, uint8_t* p) { std::memcpy(p, &a.m, sizeof(int) * 4); } /** * @brief Store lowest N (vector width) bytes into an unaligned address. */ ASTCENC_SIMD_INLINE void store_nbytes(vint4 a, uint8_t* p) { vst1q_lane_s32(reinterpret_cast(p), a.m, 0); } /** * @brief Gather N (vector width) indices from the array. */ ASTCENC_SIMD_INLINE vint4 gatheri(const int* base, vint4 indices) { alignas(16) int idx[4]; storea(indices, idx); alignas(16) int vals[4]; vals[0] = base[idx[0]]; vals[1] = base[idx[1]]; vals[2] = base[idx[2]]; vals[3] = base[idx[3]]; return vint4(vals); } /** * @brief Pack low 8 bits of N (vector width) lanes into bottom of vector. */ ASTCENC_SIMD_INLINE vint4 pack_low_bytes(vint4 a) { alignas(16) uint8_t shuf[16] { 0, 4, 8, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; uint8x16_t idx = vld1q_u8(shuf); int8x16_t av = vreinterpretq_s8_s32(a.m); return vint4(vreinterpretq_s32_s8(vqtbl1q_s8(av, idx))); } /** * @brief Return lanes from @c b if @c cond is set, else @c a. */ ASTCENC_SIMD_INLINE vint4 select(vint4 a, vint4 b, vmask4 cond) { return vint4(vbslq_s32(cond.m, b.m, a.m)); } // ============================================================================ // vfloat4 operators and functions // ============================================================================ /** * @brief Overload: vector by vector addition. */ ASTCENC_SIMD_INLINE vfloat4 operator+(vfloat4 a, vfloat4 b) { return vfloat4(vaddq_f32(a.m, b.m)); } /** * @brief Overload: vector by vector subtraction. */ ASTCENC_SIMD_INLINE vfloat4 operator-(vfloat4 a, vfloat4 b) { return vfloat4(vsubq_f32(a.m, b.m)); } /** * @brief Overload: vector by vector multiplication. */ ASTCENC_SIMD_INLINE vfloat4 operator*(vfloat4 a, vfloat4 b) { return vfloat4(vmulq_f32(a.m, b.m)); } /** * @brief Overload: vector by vector division. */ ASTCENC_SIMD_INLINE vfloat4 operator/(vfloat4 a, vfloat4 b) { return vfloat4(vdivq_f32(a.m, b.m)); } /** * @brief Overload: vector by vector equality. */ ASTCENC_SIMD_INLINE vmask4 operator==(vfloat4 a, vfloat4 b) { return vmask4(vceqq_f32(a.m, b.m)); } /** * @brief Overload: vector by vector inequality. */ ASTCENC_SIMD_INLINE vmask4 operator!=(vfloat4 a, vfloat4 b) { return vmask4(vmvnq_u32(vceqq_f32(a.m, b.m))); } /** * @brief Overload: vector by vector less than. */ ASTCENC_SIMD_INLINE vmask4 operator<(vfloat4 a, vfloat4 b) { return vmask4(vcltq_f32(a.m, b.m)); } /** * @brief Overload: vector by vector greater than. */ ASTCENC_SIMD_INLINE vmask4 operator>(vfloat4 a, vfloat4 b) { return vmask4(vcgtq_f32(a.m, b.m)); } /** * @brief Overload: vector by vector less than or equal. */ ASTCENC_SIMD_INLINE vmask4 operator<=(vfloat4 a, vfloat4 b) { return vmask4(vcleq_f32(a.m, b.m)); } /** * @brief Overload: vector by vector greater than or equal. */ ASTCENC_SIMD_INLINE vmask4 operator>=(vfloat4 a, vfloat4 b) { return vmask4(vcgeq_f32(a.m, b.m)); } /** * @brief Return the min vector of two vectors. * * If either lane value is NaN, @c b will be returned for that lane. */ ASTCENC_SIMD_INLINE vfloat4 min(vfloat4 a, vfloat4 b) { // Do not reorder - second operand will return if either is NaN return vfloat4(vminnmq_f32(a.m, b.m)); } /** * @brief Return the max vector of two vectors. * * If either lane value is NaN, @c b will be returned for that lane. */ ASTCENC_SIMD_INLINE vfloat4 max(vfloat4 a, vfloat4 b) { // Do not reorder - second operand will return if either is NaN return vfloat4(vmaxnmq_f32(a.m, b.m)); } /** * @brief Return the absolute value of the float vector. */ ASTCENC_SIMD_INLINE vfloat4 abs(vfloat4 a) { float32x4_t zero = vdupq_n_f32(0.0f); float32x4_t inv = vsubq_f32(zero, a.m); return vfloat4(vmaxq_f32(a.m, inv)); } /** * @brief Return a float rounded to the nearest integer value. */ ASTCENC_SIMD_INLINE vfloat4 round(vfloat4 a) { return vfloat4(vrndnq_f32(a.m)); } /** * @brief Return the horizontal minimum of a vector. */ ASTCENC_SIMD_INLINE vfloat4 hmin(vfloat4 a) { return vfloat4(vminvq_f32(a.m)); } /** * @brief Return the horizontal maximum of a vector. */ ASTCENC_SIMD_INLINE vfloat4 hmax(vfloat4 a) { return vfloat4(vmaxvq_f32(a.m)); } /** * @brief Return the horizontal sum of a vector. */ ASTCENC_SIMD_INLINE float hadd_s(vfloat4 a) { // Perform halving add to ensure invariance; we cannot use vaddqv as this // does (0 + 1 + 2 + 3) which is not invariant with x86 (0 + 2) + (1 + 3). float32x2_t t = vadd_f32(vget_high_f32(a.m), vget_low_f32(a.m)); return vget_lane_f32(vpadd_f32(t, t), 0); } /** * @brief Return the sqrt of the lanes in the vector. */ ASTCENC_SIMD_INLINE vfloat4 sqrt(vfloat4 a) { return vfloat4(vsqrtq_f32(a.m)); } /** * @brief Return lanes from @c b if @c cond is set, else @c a. */ ASTCENC_SIMD_INLINE vfloat4 select(vfloat4 a, vfloat4 b, vmask4 cond) { return vfloat4(vbslq_f32(cond.m, b.m, a.m)); } /** * @brief Return lanes from @c b if MSB of @c cond is set, else @c a. */ ASTCENC_SIMD_INLINE vfloat4 select_msb(vfloat4 a, vfloat4 b, vmask4 cond) { static const uint32x4_t msb = vdupq_n_u32(0x80000000u); uint32x4_t mask = vcgeq_u32(cond.m, msb); return vfloat4(vbslq_f32(mask, b.m, a.m)); } /** * @brief Load a vector of gathered results from an array; */ ASTCENC_SIMD_INLINE vfloat4 gatherf(const float* base, vint4 indices) { alignas(16) int idx[4]; storea(indices, idx); alignas(16) float vals[4]; vals[0] = base[idx[0]]; vals[1] = base[idx[1]]; vals[2] = base[idx[2]]; vals[3] = base[idx[3]]; return vfloat4(vals); } /** * @brief Store a vector to an unaligned memory address. */ ASTCENC_SIMD_INLINE void store(vfloat4 a, float* p) { vst1q_f32(p, a.m); } /** * @brief Store a vector to a 16B aligned memory address. */ ASTCENC_SIMD_INLINE void storea(vfloat4 a, float* p) { vst1q_f32(p, a.m); } /** * @brief Return a integer value for a float vector, using truncation. */ ASTCENC_SIMD_INLINE vint4 float_to_int(vfloat4 a) { return vint4(vcvtq_s32_f32(a.m)); } /** * @brief Return a integer value for a float vector, using round-to-nearest. */ ASTCENC_SIMD_INLINE vint4 float_to_int_rtn(vfloat4 a) { a = a + vfloat4(0.5f); return vint4(vcvtq_s32_f32(a.m)); } /** * @brief Return a float value for an integer vector. */ ASTCENC_SIMD_INLINE vfloat4 int_to_float(vint4 a) { return vfloat4(vcvtq_f32_s32(a.m)); } /** * @brief Return a float16 value for a float vector, using round-to-nearest. */ ASTCENC_SIMD_INLINE vint4 float_to_float16(vfloat4 a) { // Generate float16 value float16x4_t f16 = vcvt_f16_f32(a.m); // Convert each 16-bit float pattern to a 32-bit pattern uint16x4_t u16 = vreinterpret_u16_f16(f16); uint32x4_t u32 = vmovl_u16(u16); return vint4(vreinterpretq_s32_u32(u32)); } /** * @brief Return a float16 value for a float scalar, using round-to-nearest. */ static inline uint16_t float_to_float16(float a) { vfloat4 av(a); return static_cast(float_to_float16(av).lane<0>()); } /** * @brief Return a float value for a float16 vector. */ ASTCENC_SIMD_INLINE vfloat4 float16_to_float(vint4 a) { // Convert each 32-bit float pattern to a 16-bit pattern uint32x4_t u32 = vreinterpretq_u32_s32(a.m); uint16x4_t u16 = vmovn_u32(u32); float16x4_t f16 = vreinterpret_f16_u16(u16); // Generate float16 value return vfloat4(vcvt_f32_f16(f16)); } /** * @brief Return a float value for a float16 scalar. */ ASTCENC_SIMD_INLINE float float16_to_float(uint16_t a) { vint4 av(a); return float16_to_float(av).lane<0>(); } /** * @brief Return a float value as an integer bit pattern (i.e. no conversion). * * It is a common trick to convert floats into integer bit patterns, perform * some bit hackery based on knowledge they are IEEE 754 layout, and then * convert them back again. This is the first half of that flip. */ ASTCENC_SIMD_INLINE vint4 float_as_int(vfloat4 a) { return vint4(vreinterpretq_s32_f32(a.m)); } /** * @brief Return a integer value as a float bit pattern (i.e. no conversion). * * It is a common trick to convert floats into integer bit patterns, perform * some bit hackery based on knowledge they are IEEE 754 layout, and then * convert them back again. This is the second half of that flip. */ ASTCENC_SIMD_INLINE vfloat4 int_as_float(vint4 v) { return vfloat4(vreinterpretq_f32_s32(v.m)); } /** * @brief Prepare a vtable lookup table for use with the native SIMD size. */ ASTCENC_SIMD_INLINE void vtable_prepare(vint4 t0, vint4& t0p) { t0p = t0; } /** * @brief Prepare a vtable lookup table for use with the native SIMD size. */ ASTCENC_SIMD_INLINE void vtable_prepare(vint4 t0, vint4 t1, vint4& t0p, vint4& t1p) { t0p = t0; t1p = t1; } /** * @brief Prepare a vtable lookup table for use with the native SIMD size. */ ASTCENC_SIMD_INLINE void vtable_prepare( vint4 t0, vint4 t1, vint4 t2, vint4 t3, vint4& t0p, vint4& t1p, vint4& t2p, vint4& t3p) { t0p = t0; t1p = t1; t2p = t2; t3p = t3; } /** * @brief Perform an 8-bit 16-entry table lookup, with 32-bit indexes. */ ASTCENC_SIMD_INLINE vint4 vtable_8bt_32bi(vint4 t0, vint4 idx) { int8x16_t table { vreinterpretq_s8_s32(t0.m) }; // Set index byte above max index for unused bytes so table lookup returns zero int32x4_t idx_masked = vorrq_s32(idx.m, vdupq_n_s32(0xFFFFFF00)); uint8x16_t idx_bytes = vreinterpretq_u8_s32(idx_masked); return vint4(vreinterpretq_s32_s8(vqtbl1q_s8(table, idx_bytes))); } /** * @brief Perform an 8-bit 32-entry table lookup, with 32-bit indexes. */ ASTCENC_SIMD_INLINE vint4 vtable_8bt_32bi(vint4 t0, vint4 t1, vint4 idx) { int8x16x2_t table { vreinterpretq_s8_s32(t0.m), vreinterpretq_s8_s32(t1.m) }; // Set index byte above max index for unused bytes so table lookup returns zero int32x4_t idx_masked = vorrq_s32(idx.m, vdupq_n_s32(0xFFFFFF00)); uint8x16_t idx_bytes = vreinterpretq_u8_s32(idx_masked); return vint4(vreinterpretq_s32_s8(vqtbl2q_s8(table, idx_bytes))); } /** * @brief Perform an 8-bit 64-entry table lookup, with 32-bit indexes. */ ASTCENC_SIMD_INLINE vint4 vtable_8bt_32bi(vint4 t0, vint4 t1, vint4 t2, vint4 t3, vint4 idx) { int8x16x4_t table { vreinterpretq_s8_s32(t0.m), vreinterpretq_s8_s32(t1.m), vreinterpretq_s8_s32(t2.m), vreinterpretq_s8_s32(t3.m) }; // Set index byte above max index for unused bytes so table lookup returns zero int32x4_t idx_masked = vorrq_s32(idx.m, vdupq_n_s32(0xFFFFFF00)); uint8x16_t idx_bytes = vreinterpretq_u8_s32(idx_masked); return vint4(vreinterpretq_s32_s8(vqtbl4q_s8(table, idx_bytes))); } /** * @brief Return a vector of interleaved RGBA data. * * Input vectors have the value stored in the bottom 8 bits of each lane, * with high bits set to zero. * * Output vector stores a single RGBA texel packed in each lane. */ ASTCENC_SIMD_INLINE vint4 interleave_rgba8(vint4 r, vint4 g, vint4 b, vint4 a) { return r + lsl<8>(g) + lsl<16>(b) + lsl<24>(a); } /** * @brief Store a single vector lane to an unaligned address. */ ASTCENC_SIMD_INLINE void store_lane(uint8_t* base, int data) { std::memcpy(base, &data, sizeof(int)); } /** * @brief Store a vector, skipping masked lanes. * * All masked lanes must be at the end of vector, after all non-masked lanes. */ ASTCENC_SIMD_INLINE void store_lanes_masked(uint8_t* base, vint4 data, vmask4 mask) { if (mask.lane<3>()) { store(data, base); } else if (mask.lane<2>() != 0.0f) { store_lane(base + 0, data.lane<0>()); store_lane(base + 4, data.lane<1>()); store_lane(base + 8, data.lane<2>()); } else if (mask.lane<1>() != 0.0f) { store_lane(base + 0, data.lane<0>()); store_lane(base + 4, data.lane<1>()); } else if (mask.lane<0>() != 0.0f) { store_lane(base + 0, data.lane<0>()); } } #define ASTCENC_USE_NATIVE_POPCOUNT 1 /** * @brief Population bit count. * * @param v The value to population count. * * @return The number of 1 bits. */ ASTCENC_SIMD_INLINE int popcount(uint64_t v) { return static_cast(vaddlv_u8(vcnt_u8(vcreate_u8(v)))); } #endif // #ifndef ASTC_VECMATHLIB_NEON_4_H_INCLUDED