// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). // // Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "table/block_based/block_based_table_reader.h" #include #include #include #include #include #include #include #include #include #include #include "block_cache.h" #include "cache/cache_entry_roles.h" #include "cache/cache_key.h" #include "db/compaction/compaction_picker.h" #include "db/dbformat.h" #include "db/pinned_iterators_manager.h" #include "file/file_prefetch_buffer.h" #include "file/file_util.h" #include "file/random_access_file_reader.h" #include "logging/logging.h" #include "monitoring/perf_context_imp.h" #include "parsed_full_filter_block.h" #include "port/lang.h" #include "rocksdb/cache.h" #include "rocksdb/comparator.h" #include "rocksdb/convenience.h" #include "rocksdb/env.h" #include "rocksdb/file_system.h" #include "rocksdb/filter_policy.h" #include "rocksdb/iterator.h" #include "rocksdb/options.h" #include "rocksdb/snapshot.h" #include "rocksdb/statistics.h" #include "rocksdb/system_clock.h" #include "rocksdb/table.h" #include "rocksdb/table_properties.h" #include "rocksdb/trace_record.h" #include "table/block_based/binary_search_index_reader.h" #include "table/block_based/block.h" #include "table/block_based/block_based_table_factory.h" #include "table/block_based/block_based_table_iterator.h" #include "table/block_based/block_prefix_index.h" #include "table/block_based/block_type.h" #include "table/block_based/filter_block.h" #include "table/block_based/filter_policy_internal.h" #include "table/block_based/full_filter_block.h" #include "table/block_based/hash_index_reader.h" #include "table/block_based/partitioned_filter_block.h" #include "table/block_based/partitioned_index_reader.h" #include "table/block_fetcher.h" #include "table/format.h" #include "table/get_context.h" #include "table/internal_iterator.h" #include "table/meta_blocks.h" #include "table/multiget_context.h" #include "table/persistent_cache_helper.h" #include "table/persistent_cache_options.h" #include "table/sst_file_writer_collectors.h" #include "table/two_level_iterator.h" #include "test_util/sync_point.h" #include "util/coding.h" #include "util/crc32c.h" #include "util/stop_watch.h" #include "util/string_util.h" namespace ROCKSDB_NAMESPACE { namespace { CacheAllocationPtr CopyBufferToHeap(MemoryAllocator* allocator, Slice& buf) { CacheAllocationPtr heap_buf; heap_buf = AllocateBlock(buf.size(), allocator); memcpy(heap_buf.get(), buf.data(), buf.size()); return heap_buf; } } // namespace // Explicitly instantiate templates for each "blocklike" type we use (and // before implicit specialization). // This makes it possible to keep the template definitions in the .cc file. #define INSTANTIATE_RETRIEVE_BLOCK(T) \ template Status BlockBasedTable::RetrieveBlock( \ FilePrefetchBuffer * prefetch_buffer, const ReadOptions& ro, \ const BlockHandle& handle, const UncompressionDict& uncompression_dict, \ CachableEntry* out_parsed_block, GetContext* get_context, \ BlockCacheLookupContext* lookup_context, bool for_compaction, \ bool use_cache, bool async_read) const; INSTANTIATE_RETRIEVE_BLOCK(ParsedFullFilterBlock); INSTANTIATE_RETRIEVE_BLOCK(UncompressionDict); INSTANTIATE_RETRIEVE_BLOCK(Block_kData); INSTANTIATE_RETRIEVE_BLOCK(Block_kIndex); INSTANTIATE_RETRIEVE_BLOCK(Block_kFilterPartitionIndex); INSTANTIATE_RETRIEVE_BLOCK(Block_kRangeDeletion); INSTANTIATE_RETRIEVE_BLOCK(Block_kMetaIndex); } // namespace ROCKSDB_NAMESPACE // Generate the regular and coroutine versions of some methods by // including block_based_table_reader_sync_and_async.h twice // Macros in the header will expand differently based on whether // WITH_COROUTINES or WITHOUT_COROUTINES is defined // clang-format off #define WITHOUT_COROUTINES #include "table/block_based/block_based_table_reader_sync_and_async.h" #undef WITHOUT_COROUTINES #define WITH_COROUTINES #include "table/block_based/block_based_table_reader_sync_and_async.h" #undef WITH_COROUTINES // clang-format on namespace ROCKSDB_NAMESPACE { extern const uint64_t kBlockBasedTableMagicNumber; extern const std::string kHashIndexPrefixesBlock; extern const std::string kHashIndexPrefixesMetadataBlock; BlockBasedTable::~BlockBasedTable() { delete rep_; } namespace { // Read the block identified by "handle" from "file". // The only relevant option is options.verify_checksums for now. // On failure return non-OK. // On success fill *result and return OK - caller owns *result // @param uncompression_dict Data for presetting the compression library's // dictionary. template Status ReadAndParseBlockFromFile( RandomAccessFileReader* file, FilePrefetchBuffer* prefetch_buffer, const Footer& footer, const ReadOptions& options, const BlockHandle& handle, std::unique_ptr* result, const ImmutableOptions& ioptions, BlockCreateContext& create_context, bool maybe_compressed, const UncompressionDict& uncompression_dict, const PersistentCacheOptions& cache_options, MemoryAllocator* memory_allocator, bool for_compaction, bool async_read) { assert(result); BlockContents contents; BlockFetcher block_fetcher( file, prefetch_buffer, footer, options, handle, &contents, ioptions, /*do_uncompress*/ maybe_compressed, maybe_compressed, TBlocklike::kBlockType, uncompression_dict, cache_options, memory_allocator, nullptr, for_compaction); Status s; // If prefetch_buffer is not allocated, it will fallback to synchronous // reading of block contents. if (async_read && prefetch_buffer != nullptr) { s = block_fetcher.ReadAsyncBlockContents(); if (!s.ok()) { return s; } } else { s = block_fetcher.ReadBlockContents(); } if (s.ok()) { create_context.Create(result, std::move(contents)); } return s; } // For hash based index, return false if table_properties->prefix_extractor_name // and prefix_extractor both exist and match, otherwise true. inline bool PrefixExtractorChangedHelper( const TableProperties* table_properties, const SliceTransform* prefix_extractor) { // BlockBasedTableOptions::kHashSearch requires prefix_extractor to be set. // Turn off hash index in prefix_extractor is not set; if prefix_extractor // is set but prefix_extractor_block is not set, also disable hash index if (prefix_extractor == nullptr || table_properties == nullptr || table_properties->prefix_extractor_name.empty()) { return true; } // prefix_extractor and prefix_extractor_block are both non-empty if (table_properties->prefix_extractor_name != prefix_extractor->AsString()) { return true; } else { return false; } } template uint32_t GetBlockNumRestarts(const TBlocklike& block) { if constexpr (std::is_convertible_v) { const Block& b = block; return b.NumRestarts(); } else { return 0; } } } // namespace void BlockBasedTable::UpdateCacheHitMetrics(BlockType block_type, GetContext* get_context, size_t usage) const { Statistics* const statistics = rep_->ioptions.stats; PERF_COUNTER_ADD(block_cache_hit_count, 1); PERF_COUNTER_BY_LEVEL_ADD(block_cache_hit_count, 1, static_cast(rep_->level)); if (get_context) { ++get_context->get_context_stats_.num_cache_hit; get_context->get_context_stats_.num_cache_bytes_read += usage; } else { RecordTick(statistics, BLOCK_CACHE_HIT); RecordTick(statistics, BLOCK_CACHE_BYTES_READ, usage); } switch (block_type) { case BlockType::kFilter: case BlockType::kFilterPartitionIndex: PERF_COUNTER_ADD(block_cache_filter_hit_count, 1); if (get_context) { ++get_context->get_context_stats_.num_cache_filter_hit; } else { RecordTick(statistics, BLOCK_CACHE_FILTER_HIT); } break; case BlockType::kCompressionDictionary: // TODO: introduce perf counter for compression dictionary hit count if (get_context) { ++get_context->get_context_stats_.num_cache_compression_dict_hit; } else { RecordTick(statistics, BLOCK_CACHE_COMPRESSION_DICT_HIT); } break; case BlockType::kIndex: PERF_COUNTER_ADD(block_cache_index_hit_count, 1); if (get_context) { ++get_context->get_context_stats_.num_cache_index_hit; } else { RecordTick(statistics, BLOCK_CACHE_INDEX_HIT); } break; default: // TODO: introduce dedicated tickers/statistics/counters // for range tombstones if (get_context) { ++get_context->get_context_stats_.num_cache_data_hit; } else { RecordTick(statistics, BLOCK_CACHE_DATA_HIT); } break; } } void BlockBasedTable::UpdateCacheMissMetrics(BlockType block_type, GetContext* get_context) const { Statistics* const statistics = rep_->ioptions.stats; // TODO: introduce aggregate (not per-level) block cache miss count PERF_COUNTER_BY_LEVEL_ADD(block_cache_miss_count, 1, static_cast(rep_->level)); if (get_context) { ++get_context->get_context_stats_.num_cache_miss; } else { RecordTick(statistics, BLOCK_CACHE_MISS); } // TODO: introduce perf counters for misses per block type switch (block_type) { case BlockType::kFilter: case BlockType::kFilterPartitionIndex: if (get_context) { ++get_context->get_context_stats_.num_cache_filter_miss; } else { RecordTick(statistics, BLOCK_CACHE_FILTER_MISS); } break; case BlockType::kCompressionDictionary: if (get_context) { ++get_context->get_context_stats_.num_cache_compression_dict_miss; } else { RecordTick(statistics, BLOCK_CACHE_COMPRESSION_DICT_MISS); } break; case BlockType::kIndex: if (get_context) { ++get_context->get_context_stats_.num_cache_index_miss; } else { RecordTick(statistics, BLOCK_CACHE_INDEX_MISS); } break; default: // TODO: introduce dedicated tickers/statistics/counters // for range tombstones if (get_context) { ++get_context->get_context_stats_.num_cache_data_miss; } else { RecordTick(statistics, BLOCK_CACHE_DATA_MISS); } break; } } void BlockBasedTable::UpdateCacheInsertionMetrics( BlockType block_type, GetContext* get_context, size_t usage, bool redundant, Statistics* const statistics) { // TODO: introduce perf counters for block cache insertions if (get_context) { ++get_context->get_context_stats_.num_cache_add; if (redundant) { ++get_context->get_context_stats_.num_cache_add_redundant; } get_context->get_context_stats_.num_cache_bytes_write += usage; } else { RecordTick(statistics, BLOCK_CACHE_ADD); if (redundant) { RecordTick(statistics, BLOCK_CACHE_ADD_REDUNDANT); } RecordTick(statistics, BLOCK_CACHE_BYTES_WRITE, usage); } switch (block_type) { case BlockType::kFilter: case BlockType::kFilterPartitionIndex: if (get_context) { ++get_context->get_context_stats_.num_cache_filter_add; if (redundant) { ++get_context->get_context_stats_.num_cache_filter_add_redundant; } get_context->get_context_stats_.num_cache_filter_bytes_insert += usage; } else { RecordTick(statistics, BLOCK_CACHE_FILTER_ADD); if (redundant) { RecordTick(statistics, BLOCK_CACHE_FILTER_ADD_REDUNDANT); } RecordTick(statistics, BLOCK_CACHE_FILTER_BYTES_INSERT, usage); } break; case BlockType::kCompressionDictionary: if (get_context) { ++get_context->get_context_stats_.num_cache_compression_dict_add; if (redundant) { ++get_context->get_context_stats_ .num_cache_compression_dict_add_redundant; } get_context->get_context_stats_ .num_cache_compression_dict_bytes_insert += usage; } else { RecordTick(statistics, BLOCK_CACHE_COMPRESSION_DICT_ADD); if (redundant) { RecordTick(statistics, BLOCK_CACHE_COMPRESSION_DICT_ADD_REDUNDANT); } RecordTick(statistics, BLOCK_CACHE_COMPRESSION_DICT_BYTES_INSERT, usage); } break; case BlockType::kIndex: if (get_context) { ++get_context->get_context_stats_.num_cache_index_add; if (redundant) { ++get_context->get_context_stats_.num_cache_index_add_redundant; } get_context->get_context_stats_.num_cache_index_bytes_insert += usage; } else { RecordTick(statistics, BLOCK_CACHE_INDEX_ADD); if (redundant) { RecordTick(statistics, BLOCK_CACHE_INDEX_ADD_REDUNDANT); } RecordTick(statistics, BLOCK_CACHE_INDEX_BYTES_INSERT, usage); } break; default: // TODO: introduce dedicated tickers/statistics/counters // for range tombstones if (get_context) { ++get_context->get_context_stats_.num_cache_data_add; if (redundant) { ++get_context->get_context_stats_.num_cache_data_add_redundant; } get_context->get_context_stats_.num_cache_data_bytes_insert += usage; } else { RecordTick(statistics, BLOCK_CACHE_DATA_ADD); if (redundant) { RecordTick(statistics, BLOCK_CACHE_DATA_ADD_REDUNDANT); } RecordTick(statistics, BLOCK_CACHE_DATA_BYTES_INSERT, usage); } break; } } namespace { // Return True if table_properties has `user_prop_name` has a `true` value // or it doesn't contain this property (for backward compatible). bool IsFeatureSupported(const TableProperties& table_properties, const std::string& user_prop_name, Logger* info_log) { auto& props = table_properties.user_collected_properties; auto pos = props.find(user_prop_name); // Older version doesn't have this value set. Skip this check. if (pos != props.end()) { if (pos->second == kPropFalse) { return false; } else if (pos->second != kPropTrue) { ROCKS_LOG_WARN(info_log, "Property %s has invalidate value %s", user_prop_name.c_str(), pos->second.c_str()); } } return true; } // Caller has to ensure seqno is not nullptr. Status GetGlobalSequenceNumber(const TableProperties& table_properties, SequenceNumber largest_seqno, SequenceNumber* seqno) { const auto& props = table_properties.user_collected_properties; const auto version_pos = props.find(ExternalSstFilePropertyNames::kVersion); const auto seqno_pos = props.find(ExternalSstFilePropertyNames::kGlobalSeqno); *seqno = kDisableGlobalSequenceNumber; if (version_pos == props.end()) { if (seqno_pos != props.end()) { std::array msg_buf; // This is not an external sst file, global_seqno is not supported. snprintf( msg_buf.data(), msg_buf.max_size(), "A non-external sst file have global seqno property with value %s", seqno_pos->second.c_str()); return Status::Corruption(msg_buf.data()); } return Status::OK(); } uint32_t version = DecodeFixed32(version_pos->second.c_str()); if (version < 2) { if (seqno_pos != props.end() || version != 1) { std::array msg_buf; // This is a v1 external sst file, global_seqno is not supported. snprintf(msg_buf.data(), msg_buf.max_size(), "An external sst file with version %u have global seqno " "property with value %s", version, seqno_pos->second.c_str()); return Status::Corruption(msg_buf.data()); } return Status::OK(); } // Since we have a plan to deprecate global_seqno, we do not return failure // if seqno_pos == props.end(). We rely on version_pos to detect whether the // SST is external. SequenceNumber global_seqno(0); if (seqno_pos != props.end()) { global_seqno = DecodeFixed64(seqno_pos->second.c_str()); } // SstTableReader open table reader with kMaxSequenceNumber as largest_seqno // to denote it is unknown. if (largest_seqno < kMaxSequenceNumber) { if (global_seqno == 0) { global_seqno = largest_seqno; } if (global_seqno != largest_seqno) { std::array msg_buf; snprintf( msg_buf.data(), msg_buf.max_size(), "An external sst file with version %u have global seqno property " "with value %s, while largest seqno in the file is %llu", version, seqno_pos->second.c_str(), static_cast(largest_seqno)); return Status::Corruption(msg_buf.data()); } } *seqno = global_seqno; if (global_seqno > kMaxSequenceNumber) { std::array msg_buf; snprintf(msg_buf.data(), msg_buf.max_size(), "An external sst file with version %u have global seqno property " "with value %llu, which is greater than kMaxSequenceNumber", version, static_cast(global_seqno)); return Status::Corruption(msg_buf.data()); } return Status::OK(); } } // namespace void BlockBasedTable::SetupBaseCacheKey(const TableProperties* properties, const std::string& cur_db_session_id, uint64_t cur_file_number, OffsetableCacheKey* out_base_cache_key, bool* out_is_stable) { // Use a stable cache key if sufficient data is in table properties std::string db_session_id; uint64_t file_num; std::string db_id; if (properties && !properties->db_session_id.empty() && properties->orig_file_number > 0) { // (Newer SST file case) // We must have both properties to get a stable unique id because // CreateColumnFamilyWithImport or IngestExternalFiles can change the // file numbers on a file. db_session_id = properties->db_session_id; file_num = properties->orig_file_number; // Less critical, populated in earlier release than above db_id = properties->db_id; if (out_is_stable) { *out_is_stable = true; } } else { // (Old SST file case) // We use (unique) cache keys based on current identifiers. These are at // least stable across table file close and re-open, but not across // different DBs nor DB close and re-open. db_session_id = cur_db_session_id; file_num = cur_file_number; // Plumbing through the DB ID to here would be annoying, and of limited // value because of the case of VersionSet::Recover opening some table // files and later setting the DB ID. So we just rely on uniqueness // level provided by session ID. db_id = "unknown"; if (out_is_stable) { *out_is_stable = false; } } // Too many tests to update to get these working // assert(file_num > 0); // assert(!db_session_id.empty()); // assert(!db_id.empty()); // Minimum block size is 5 bytes; therefore we can trim off two lower bits // from offsets. See GetCacheKey. *out_base_cache_key = OffsetableCacheKey(db_id, db_session_id, file_num); } CacheKey BlockBasedTable::GetCacheKey(const OffsetableCacheKey& base_cache_key, const BlockHandle& handle) { // Minimum block size is 5 bytes; therefore we can trim off two lower bits // from offet. return base_cache_key.WithOffset(handle.offset() >> 2); } Status BlockBasedTable::Open( const ReadOptions& read_options, const ImmutableOptions& ioptions, const EnvOptions& env_options, const BlockBasedTableOptions& table_options, const InternalKeyComparator& internal_comparator, std::unique_ptr&& file, uint64_t file_size, uint8_t block_protection_bytes_per_key, std::unique_ptr* table_reader, uint64_t tail_size, std::shared_ptr table_reader_cache_res_mgr, const std::shared_ptr& prefix_extractor, const bool prefetch_index_and_filter_in_cache, const bool skip_filters, const int level, const bool immortal_table, const SequenceNumber largest_seqno, const bool force_direct_prefetch, TailPrefetchStats* tail_prefetch_stats, BlockCacheTracer* const block_cache_tracer, size_t max_file_size_for_l0_meta_pin, const std::string& cur_db_session_id, uint64_t cur_file_num, UniqueId64x2 expected_unique_id) { table_reader->reset(); Status s; Footer footer; std::unique_ptr prefetch_buffer; // From read_options, retain deadline, io_timeout, rate_limiter_priority, and // verify_checksums. In future, we may retain more options. ReadOptions ro; ro.deadline = read_options.deadline; ro.io_timeout = read_options.io_timeout; ro.rate_limiter_priority = read_options.rate_limiter_priority; ro.verify_checksums = read_options.verify_checksums; ro.io_activity = read_options.io_activity; // prefetch both index and filters, down to all partitions const bool prefetch_all = prefetch_index_and_filter_in_cache || level == 0; const bool preload_all = !table_options.cache_index_and_filter_blocks; if (!ioptions.allow_mmap_reads) { s = PrefetchTail(ro, file.get(), file_size, force_direct_prefetch, tail_prefetch_stats, prefetch_all, preload_all, &prefetch_buffer, ioptions.stats, tail_size, ioptions.logger); // Return error in prefetch path to users. if (!s.ok()) { return s; } } else { // Should not prefetch for mmap mode. prefetch_buffer.reset(new FilePrefetchBuffer( 0 /* readahead_size */, 0 /* max_readahead_size */, false /* enable */, true /* track_min_offset */)); } // Read in the following order: // 1. Footer // 2. [metaindex block] // 3. [meta block: properties] // 4. [meta block: range deletion tombstone] // 5. [meta block: compression dictionary] // 6. [meta block: index] // 7. [meta block: filter] IOOptions opts; s = file->PrepareIOOptions(ro, opts); if (s.ok()) { s = ReadFooterFromFile(opts, file.get(), *ioptions.fs, prefetch_buffer.get(), file_size, &footer, kBlockBasedTableMagicNumber); } if (!s.ok()) { return s; } if (!IsSupportedFormatVersion(footer.format_version())) { return Status::Corruption( "Unknown Footer version. Maybe this file was created with newer " "version of RocksDB?"); } BlockCacheLookupContext lookup_context{TableReaderCaller::kPrefetch}; Rep* rep = new BlockBasedTable::Rep(ioptions, env_options, table_options, internal_comparator, skip_filters, file_size, level, immortal_table); rep->file = std::move(file); rep->footer = footer; // For fully portable/stable cache keys, we need to read the properties // block before setting up cache keys. TODO: consider setting up a bootstrap // cache key for PersistentCache to use for metaindex and properties blocks. rep->persistent_cache_options = PersistentCacheOptions(); // Meta-blocks are not dictionary compressed. Explicitly set the dictionary // handle to null, otherwise it may be seen as uninitialized during the below // meta-block reads. rep->compression_dict_handle = BlockHandle::NullBlockHandle(); rep->create_context.protection_bytes_per_key = block_protection_bytes_per_key; // Read metaindex std::unique_ptr new_table( new BlockBasedTable(rep, block_cache_tracer)); std::unique_ptr metaindex; std::unique_ptr metaindex_iter; s = new_table->ReadMetaIndexBlock(ro, prefetch_buffer.get(), &metaindex, &metaindex_iter); if (!s.ok()) { return s; } // Populates table_properties and some fields that depend on it, // such as index_type. s = new_table->ReadPropertiesBlock(ro, prefetch_buffer.get(), metaindex_iter.get(), largest_seqno); if (!s.ok()) { return s; } // Populate BlockCreateContext bool blocks_definitely_zstd_compressed = rep->table_properties && (rep->table_properties->compression_name == CompressionTypeToString(kZSTD) || rep->table_properties->compression_name == CompressionTypeToString(kZSTDNotFinalCompression)); rep->create_context = BlockCreateContext( &rep->table_options, rep->ioptions.stats, blocks_definitely_zstd_compressed, block_protection_bytes_per_key, rep->internal_comparator.user_comparator(), rep->index_value_is_full, rep->index_has_first_key); // Check expected unique id if provided if (expected_unique_id != kNullUniqueId64x2) { auto props = rep->table_properties; if (!props) { return Status::Corruption("Missing table properties on file " + std::to_string(cur_file_num) + " with known unique ID"); } UniqueId64x2 actual_unique_id{}; s = GetSstInternalUniqueId(props->db_id, props->db_session_id, props->orig_file_number, &actual_unique_id, /*force*/ true); assert(s.ok()); // because force=true if (expected_unique_id != actual_unique_id) { return Status::Corruption( "Mismatch in unique ID on table file " + std::to_string(cur_file_num) + ". Expected: " + InternalUniqueIdToHumanString(&expected_unique_id) + " Actual: " + InternalUniqueIdToHumanString(&actual_unique_id)); } TEST_SYNC_POINT_CALLBACK("BlockBasedTable::Open::PassedVerifyUniqueId", &actual_unique_id); } else { TEST_SYNC_POINT_CALLBACK("BlockBasedTable::Open::SkippedVerifyUniqueId", nullptr); if (ioptions.verify_sst_unique_id_in_manifest && ioptions.logger) { // A crude but isolated way of reporting unverified files. This should not // be an ongoing concern so doesn't deserve a place in Statistics IMHO. static std::atomic unverified_count{0}; auto prev_count = unverified_count.fetch_add(1, std::memory_order_relaxed); if (prev_count == 0) { ROCKS_LOG_WARN( ioptions.logger, "At least one SST file opened without unique ID to verify: %" PRIu64 ".sst", cur_file_num); } else if (prev_count % 1000 == 0) { ROCKS_LOG_WARN( ioptions.logger, "Another ~1000 SST files opened without unique ID to verify"); } } } // Set up prefix extracto as needed bool force_null_table_prefix_extractor = false; TEST_SYNC_POINT_CALLBACK( "BlockBasedTable::Open::ForceNullTablePrefixExtractor", &force_null_table_prefix_extractor); if (force_null_table_prefix_extractor) { assert(!rep->table_prefix_extractor); } else if (!PrefixExtractorChangedHelper(rep->table_properties.get(), prefix_extractor.get())) { // Establish fast path for unchanged prefix_extractor rep->table_prefix_extractor = prefix_extractor; } else { // Current prefix_extractor doesn't match table if (rep->table_properties) { //**TODO: If/When the DBOptions has a registry in it, the ConfigOptions // will need to use it ConfigOptions config_options; Status st = SliceTransform::CreateFromString( config_options, rep->table_properties->prefix_extractor_name, &(rep->table_prefix_extractor)); if (!st.ok()) { //**TODO: Should this be error be returned or swallowed? ROCKS_LOG_ERROR(rep->ioptions.logger, "Failed to create prefix extractor[%s]: %s", rep->table_properties->prefix_extractor_name.c_str(), st.ToString().c_str()); } } } // With properties loaded, we can set up portable/stable cache keys SetupBaseCacheKey(rep->table_properties.get(), cur_db_session_id, cur_file_num, &rep->base_cache_key); rep->persistent_cache_options = PersistentCacheOptions(rep->table_options.persistent_cache, rep->base_cache_key, rep->ioptions.stats); s = new_table->ReadRangeDelBlock(ro, prefetch_buffer.get(), metaindex_iter.get(), internal_comparator, &lookup_context); if (!s.ok()) { return s; } s = new_table->PrefetchIndexAndFilterBlocks( ro, prefetch_buffer.get(), metaindex_iter.get(), new_table.get(), prefetch_all, table_options, level, file_size, max_file_size_for_l0_meta_pin, &lookup_context); if (s.ok()) { // Update tail prefetch stats assert(prefetch_buffer.get() != nullptr); if (tail_prefetch_stats != nullptr) { assert(prefetch_buffer->min_offset_read() < file_size); tail_prefetch_stats->RecordEffectiveSize( static_cast(file_size) - prefetch_buffer->min_offset_read()); } } if (s.ok() && table_reader_cache_res_mgr) { std::size_t mem_usage = new_table->ApproximateMemoryUsage(); s = table_reader_cache_res_mgr->MakeCacheReservation( mem_usage, &(rep->table_reader_cache_res_handle)); if (s.IsMemoryLimit()) { s = Status::MemoryLimit( "Can't allocate " + kCacheEntryRoleToCamelString[static_cast( CacheEntryRole::kBlockBasedTableReader)] + " due to memory limit based on " "cache capacity for memory allocation"); } } if (s.ok()) { *table_reader = std::move(new_table); } return s; } Status BlockBasedTable::PrefetchTail( const ReadOptions& ro, RandomAccessFileReader* file, uint64_t file_size, bool force_direct_prefetch, TailPrefetchStats* tail_prefetch_stats, const bool prefetch_all, const bool preload_all, std::unique_ptr* prefetch_buffer, Statistics* stats, uint64_t tail_size, Logger* const logger) { assert(tail_size <= file_size); size_t tail_prefetch_size = 0; if (tail_size != 0) { tail_prefetch_size = tail_size; } else { if (tail_prefetch_stats != nullptr) { // Multiple threads may get a 0 (no history) when running in parallel, // but it will get cleared after the first of them finishes. tail_prefetch_size = tail_prefetch_stats->GetSuggestedPrefetchSize(); } if (tail_prefetch_size == 0) { // Before read footer, readahead backwards to prefetch data. Do more // readahead if we're going to read index/filter. // TODO: This may incorrectly select small readahead in case partitioned // index/filter is enabled and top-level partition pinning is enabled. // That's because we need to issue readahead before we read the // properties, at which point we don't yet know the index type. tail_prefetch_size = prefetch_all || preload_all ? 512 * 1024 : 4 * 1024; ROCKS_LOG_WARN(logger, "Tail prefetch size %zu is calculated based on heuristics", tail_prefetch_size); } else { ROCKS_LOG_WARN( logger, "Tail prefetch size %zu is calculated based on TailPrefetchStats", tail_prefetch_size); } } size_t prefetch_off; size_t prefetch_len; if (file_size < tail_prefetch_size) { prefetch_off = 0; prefetch_len = static_cast(file_size); } else { prefetch_off = static_cast(file_size - tail_prefetch_size); prefetch_len = tail_prefetch_size; } TEST_SYNC_POINT_CALLBACK("BlockBasedTable::Open::TailPrefetchLen", &tail_prefetch_size); // Try file system prefetch if (!file->use_direct_io() && !force_direct_prefetch) { if (!file->Prefetch(prefetch_off, prefetch_len, ro.rate_limiter_priority) .IsNotSupported()) { prefetch_buffer->reset(new FilePrefetchBuffer( 0 /* readahead_size */, 0 /* max_readahead_size */, false /* enable */, true /* track_min_offset */)); return Status::OK(); } } // Use `FilePrefetchBuffer` prefetch_buffer->reset(new FilePrefetchBuffer( 0 /* readahead_size */, 0 /* max_readahead_size */, true /* enable */, true /* track_min_offset */, false /* implicit_auto_readahead */, 0 /* num_file_reads */, 0 /* num_file_reads_for_auto_readahead */, nullptr /* fs */, nullptr /* clock */, stats, FilePrefetchBufferUsage::kTableOpenPrefetchTail)); IOOptions opts; Status s = file->PrepareIOOptions(ro, opts); if (s.ok()) { s = (*prefetch_buffer) ->Prefetch(opts, file, prefetch_off, prefetch_len, ro.rate_limiter_priority); } return s; } Status BlockBasedTable::ReadPropertiesBlock( const ReadOptions& ro, FilePrefetchBuffer* prefetch_buffer, InternalIterator* meta_iter, const SequenceNumber largest_seqno) { Status s; BlockHandle handle; s = FindOptionalMetaBlock(meta_iter, kPropertiesBlockName, &handle); if (!s.ok()) { ROCKS_LOG_WARN(rep_->ioptions.logger, "Error when seeking to properties block from file: %s", s.ToString().c_str()); } else if (!handle.IsNull()) { s = meta_iter->status(); std::unique_ptr table_properties; if (s.ok()) { s = ReadTablePropertiesHelper( ro, handle, rep_->file.get(), prefetch_buffer, rep_->footer, rep_->ioptions, &table_properties, nullptr /* memory_allocator */); } IGNORE_STATUS_IF_ERROR(s); if (!s.ok()) { ROCKS_LOG_WARN(rep_->ioptions.logger, "Encountered error while reading data from properties " "block %s", s.ToString().c_str()); } else { assert(table_properties != nullptr); rep_->table_properties = std::move(table_properties); rep_->blocks_maybe_compressed = rep_->table_properties->compression_name != CompressionTypeToString(kNoCompression); } } else { ROCKS_LOG_ERROR(rep_->ioptions.logger, "Cannot find Properties block from file."); } // Read the table properties, if provided. if (rep_->table_properties) { rep_->whole_key_filtering &= IsFeatureSupported(*(rep_->table_properties), BlockBasedTablePropertyNames::kWholeKeyFiltering, rep_->ioptions.logger); rep_->prefix_filtering &= IsFeatureSupported( *(rep_->table_properties), BlockBasedTablePropertyNames::kPrefixFiltering, rep_->ioptions.logger); rep_->index_key_includes_seq = rep_->table_properties->index_key_is_user_key == 0; rep_->index_value_is_full = rep_->table_properties->index_value_is_delta_encoded == 0; // Update index_type with the true type. // If table properties don't contain index type, we assume that the table // is in very old format and has kBinarySearch index type. auto& props = rep_->table_properties->user_collected_properties; auto index_type_pos = props.find(BlockBasedTablePropertyNames::kIndexType); if (index_type_pos != props.end()) { rep_->index_type = static_cast( DecodeFixed32(index_type_pos->second.c_str())); } auto min_ts_pos = props.find("rocksdb.timestamp_min"); if (min_ts_pos != props.end()) { rep_->min_timestamp = Slice(min_ts_pos->second); } auto max_ts_pos = props.find("rocksdb.timestamp_max"); if (max_ts_pos != props.end()) { rep_->max_timestamp = Slice(max_ts_pos->second); } rep_->index_has_first_key = rep_->index_type == BlockBasedTableOptions::kBinarySearchWithFirstKey; s = GetGlobalSequenceNumber(*(rep_->table_properties), largest_seqno, &(rep_->global_seqno)); if (!s.ok()) { ROCKS_LOG_ERROR(rep_->ioptions.logger, "%s", s.ToString().c_str()); } } return s; } Status BlockBasedTable::ReadRangeDelBlock( const ReadOptions& read_options, FilePrefetchBuffer* prefetch_buffer, InternalIterator* meta_iter, const InternalKeyComparator& internal_comparator, BlockCacheLookupContext* lookup_context) { Status s; BlockHandle range_del_handle; s = FindOptionalMetaBlock(meta_iter, kRangeDelBlockName, &range_del_handle); if (!s.ok()) { ROCKS_LOG_WARN( rep_->ioptions.logger, "Error when seeking to range delete tombstones block from file: %s", s.ToString().c_str()); } else if (!range_del_handle.IsNull()) { Status tmp_status; std::unique_ptr iter(NewDataBlockIterator( read_options, range_del_handle, /*input_iter=*/nullptr, BlockType::kRangeDeletion, /*get_context=*/nullptr, lookup_context, prefetch_buffer, /*for_compaction= */ false, /*async_read= */ false, tmp_status)); assert(iter != nullptr); s = iter->status(); if (!s.ok()) { ROCKS_LOG_WARN( rep_->ioptions.logger, "Encountered error while reading data from range del block %s", s.ToString().c_str()); IGNORE_STATUS_IF_ERROR(s); } else { rep_->fragmented_range_dels = std::make_shared(std::move(iter), internal_comparator); } } return s; } Status BlockBasedTable::PrefetchIndexAndFilterBlocks( const ReadOptions& ro, FilePrefetchBuffer* prefetch_buffer, InternalIterator* meta_iter, BlockBasedTable* new_table, bool prefetch_all, const BlockBasedTableOptions& table_options, const int level, size_t file_size, size_t max_file_size_for_l0_meta_pin, BlockCacheLookupContext* lookup_context) { // Find filter handle and filter type if (rep_->filter_policy) { auto name = rep_->filter_policy->CompatibilityName(); bool builtin_compatible = strcmp(name, BuiltinFilterPolicy::kCompatibilityName()) == 0; for (const auto& [filter_type, prefix] : {std::make_pair(Rep::FilterType::kFullFilter, kFullFilterBlockPrefix), std::make_pair(Rep::FilterType::kPartitionedFilter, kPartitionedFilterBlockPrefix), std::make_pair(Rep::FilterType::kNoFilter, kObsoleteFilterBlockPrefix)}) { if (builtin_compatible) { // This code is only here to deal with a hiccup in early 7.0.x where // there was an unintentional name change in the SST files metadata. // It should be OK to remove this in the future (late 2022) and just // have the 'else' code. // NOTE: the test:: names below are likely not needed but included // out of caution static const std::unordered_set kBuiltinNameAndAliases = { BuiltinFilterPolicy::kCompatibilityName(), test::LegacyBloomFilterPolicy::kClassName(), test::FastLocalBloomFilterPolicy::kClassName(), test::Standard128RibbonFilterPolicy::kClassName(), "rocksdb.internal.DeprecatedBlockBasedBloomFilter", BloomFilterPolicy::kClassName(), RibbonFilterPolicy::kClassName(), }; // For efficiency, do a prefix seek and see if the first match is // good. meta_iter->Seek(prefix); if (meta_iter->status().ok() && meta_iter->Valid()) { Slice key = meta_iter->key(); if (key.starts_with(prefix)) { key.remove_prefix(prefix.size()); if (kBuiltinNameAndAliases.find(key.ToString()) != kBuiltinNameAndAliases.end()) { Slice v = meta_iter->value(); Status s = rep_->filter_handle.DecodeFrom(&v); if (s.ok()) { rep_->filter_type = filter_type; if (filter_type == Rep::FilterType::kNoFilter) { ROCKS_LOG_WARN(rep_->ioptions.logger, "Detected obsolete filter type in %s. Read " "performance might suffer until DB is fully " "re-compacted.", rep_->file->file_name().c_str()); } break; } } } } } else { std::string filter_block_key = prefix + name; if (FindMetaBlock(meta_iter, filter_block_key, &rep_->filter_handle) .ok()) { rep_->filter_type = filter_type; if (filter_type == Rep::FilterType::kNoFilter) { ROCKS_LOG_WARN( rep_->ioptions.logger, "Detected obsolete filter type in %s. Read performance might " "suffer until DB is fully re-compacted.", rep_->file->file_name().c_str()); } break; } } } } // Partition filters cannot be enabled without partition indexes assert(rep_->filter_type != Rep::FilterType::kPartitionedFilter || rep_->index_type == BlockBasedTableOptions::kTwoLevelIndexSearch); // Find compression dictionary handle Status s = FindOptionalMetaBlock(meta_iter, kCompressionDictBlockName, &rep_->compression_dict_handle); if (!s.ok()) { return s; } BlockBasedTableOptions::IndexType index_type = rep_->index_type; const bool use_cache = table_options.cache_index_and_filter_blocks; const bool maybe_flushed = level == 0 && file_size <= max_file_size_for_l0_meta_pin; std::function is_pinned = [maybe_flushed, &is_pinned](PinningTier pinning_tier, PinningTier fallback_pinning_tier) { // Fallback to fallback would lead to infinite recursion. Disallow it. assert(fallback_pinning_tier != PinningTier::kFallback); switch (pinning_tier) { case PinningTier::kFallback: return is_pinned(fallback_pinning_tier, PinningTier::kNone /* fallback_pinning_tier */); case PinningTier::kNone: return false; case PinningTier::kFlushedAndSimilar: return maybe_flushed; case PinningTier::kAll: return true; }; // In GCC, this is needed to suppress `control reaches end of non-void // function [-Werror=return-type]`. assert(false); return false; }; const bool pin_top_level_index = is_pinned( table_options.metadata_cache_options.top_level_index_pinning, table_options.pin_top_level_index_and_filter ? PinningTier::kAll : PinningTier::kNone); const bool pin_partition = is_pinned(table_options.metadata_cache_options.partition_pinning, table_options.pin_l0_filter_and_index_blocks_in_cache ? PinningTier::kFlushedAndSimilar : PinningTier::kNone); const bool pin_unpartitioned = is_pinned(table_options.metadata_cache_options.unpartitioned_pinning, table_options.pin_l0_filter_and_index_blocks_in_cache ? PinningTier::kFlushedAndSimilar : PinningTier::kNone); // pin the first level of index const bool pin_index = index_type == BlockBasedTableOptions::kTwoLevelIndexSearch ? pin_top_level_index : pin_unpartitioned; // prefetch the first level of index // WART: this might be redundant (unnecessary cache hit) if !pin_index, // depending on prepopulate_block_cache option const bool prefetch_index = prefetch_all || pin_index; std::unique_ptr index_reader; s = new_table->CreateIndexReader(ro, prefetch_buffer, meta_iter, use_cache, prefetch_index, pin_index, lookup_context, &index_reader); if (!s.ok()) { return s; } rep_->index_reader = std::move(index_reader); // The partitions of partitioned index are always stored in cache. They // are hence follow the configuration for pin and prefetch regardless of // the value of cache_index_and_filter_blocks if (prefetch_all || pin_partition) { s = rep_->index_reader->CacheDependencies(ro, pin_partition, prefetch_buffer); } if (!s.ok()) { return s; } // pin the first level of filter const bool pin_filter = rep_->filter_type == Rep::FilterType::kPartitionedFilter ? pin_top_level_index : pin_unpartitioned; // prefetch the first level of filter // WART: this might be redundant (unnecessary cache hit) if !pin_filter, // depending on prepopulate_block_cache option const bool prefetch_filter = prefetch_all || pin_filter; if (rep_->filter_policy) { auto filter = new_table->CreateFilterBlockReader( ro, prefetch_buffer, use_cache, prefetch_filter, pin_filter, lookup_context); if (filter) { // Refer to the comment above about paritioned indexes always being cached if (prefetch_all || pin_partition) { s = filter->CacheDependencies(ro, pin_partition, prefetch_buffer); if (!s.ok()) { return s; } } rep_->filter = std::move(filter); } } if (!rep_->compression_dict_handle.IsNull()) { std::unique_ptr uncompression_dict_reader; s = UncompressionDictReader::Create( this, ro, prefetch_buffer, use_cache, prefetch_all || pin_unpartitioned, pin_unpartitioned, lookup_context, &uncompression_dict_reader); if (!s.ok()) { return s; } rep_->uncompression_dict_reader = std::move(uncompression_dict_reader); } assert(s.ok()); return s; } void BlockBasedTable::SetupForCompaction() { switch (rep_->ioptions.access_hint_on_compaction_start) { case Options::NONE: break; case Options::NORMAL: rep_->file->file()->Hint(FSRandomAccessFile::kNormal); break; case Options::SEQUENTIAL: rep_->file->file()->Hint(FSRandomAccessFile::kSequential); break; case Options::WILLNEED: rep_->file->file()->Hint(FSRandomAccessFile::kWillNeed); break; default: assert(false); } } std::shared_ptr BlockBasedTable::GetTableProperties() const { return rep_->table_properties; } size_t BlockBasedTable::ApproximateMemoryUsage() const { size_t usage = 0; if (rep_) { usage += rep_->ApproximateMemoryUsage(); } else { return usage; } if (rep_->filter) { usage += rep_->filter->ApproximateMemoryUsage(); } if (rep_->index_reader) { usage += rep_->index_reader->ApproximateMemoryUsage(); } if (rep_->uncompression_dict_reader) { usage += rep_->uncompression_dict_reader->ApproximateMemoryUsage(); } if (rep_->table_properties) { usage += rep_->table_properties->ApproximateMemoryUsage(); } return usage; } // Load the meta-index-block from the file. On success, return the loaded // metaindex // block and its iterator. Status BlockBasedTable::ReadMetaIndexBlock( const ReadOptions& ro, FilePrefetchBuffer* prefetch_buffer, std::unique_ptr* metaindex_block, std::unique_ptr* iter) { // TODO(sanjay): Skip this if footer.metaindex_handle() size indicates // it is an empty block. std::unique_ptr metaindex; Status s = ReadAndParseBlockFromFile( rep_->file.get(), prefetch_buffer, rep_->footer, ro, rep_->footer.metaindex_handle(), &metaindex, rep_->ioptions, rep_->create_context, true /*maybe_compressed*/, UncompressionDict::GetEmptyDict(), rep_->persistent_cache_options, GetMemoryAllocator(rep_->table_options), false /* for_compaction */, false /* async_read */); if (!s.ok()) { ROCKS_LOG_ERROR(rep_->ioptions.logger, "Encountered error while reading data from properties" " block %s", s.ToString().c_str()); return s; } *metaindex_block = std::move(metaindex); // meta block uses bytewise comparator. iter->reset(metaindex_block->get()->NewMetaIterator()); return Status::OK(); } template Cache::Priority BlockBasedTable::GetCachePriority() const { // Here we treat the legacy name "...index_and_filter_blocks..." to mean all // metadata blocks that might go into block cache, EXCEPT only those needed // for the read path (Get, etc.). TableProperties should not be needed on the // read path (prefix extractor setting is an O(1) size special case that we // are working not to require from TableProperties), so it is not given // high-priority treatment if it should go into BlockCache. if constexpr (TBlocklike::kBlockType == BlockType::kData || TBlocklike::kBlockType == BlockType::kProperties) { return Cache::Priority::LOW; } else if (rep_->table_options .cache_index_and_filter_blocks_with_high_priority) { return Cache::Priority::HIGH; } else { return Cache::Priority::LOW; } } template WithBlocklikeCheck BlockBasedTable::GetDataBlockFromCache( const Slice& cache_key, BlockCacheInterface block_cache, CachableEntry* out_parsed_block, GetContext* get_context) const { assert(out_parsed_block); assert(out_parsed_block->IsEmpty()); Status s; Statistics* statistics = rep_->ioptions.statistics.get(); // Lookup uncompressed cache first if (block_cache) { assert(!cache_key.empty()); auto cache_handle = block_cache.LookupFull( cache_key, &rep_->create_context, GetCachePriority(), statistics, rep_->ioptions.lowest_used_cache_tier); // Avoid updating metrics here if the handle is not complete yet. This // happens with MultiGet and secondary cache. So update the metrics only // if its a miss, or a hit and value is ready if (!cache_handle) { UpdateCacheMissMetrics(TBlocklike::kBlockType, get_context); } else { TBlocklike* value = block_cache.Value(cache_handle); if (value) { UpdateCacheHitMetrics(TBlocklike::kBlockType, get_context, block_cache.get()->GetUsage(cache_handle)); } out_parsed_block->SetCachedValue(value, block_cache.get(), cache_handle); return s; } } // If not found, search from the compressed block cache. assert(out_parsed_block->IsEmpty()); return s; } template WithBlocklikeCheck BlockBasedTable::PutDataBlockToCache( const Slice& cache_key, BlockCacheInterface block_cache, CachableEntry* out_parsed_block, BlockContents&& block_contents, CompressionType block_comp_type, const UncompressionDict& uncompression_dict, MemoryAllocator* memory_allocator, GetContext* get_context) const { const ImmutableOptions& ioptions = rep_->ioptions; const uint32_t format_version = rep_->table_options.format_version; assert(out_parsed_block); assert(out_parsed_block->IsEmpty()); Status s; Statistics* statistics = ioptions.stats; std::unique_ptr block_holder; if (block_comp_type != kNoCompression) { // Retrieve the uncompressed contents into a new buffer BlockContents uncompressed_block_contents; UncompressionContext context(block_comp_type); UncompressionInfo info(context, uncompression_dict, block_comp_type); s = UncompressBlockData(info, block_contents.data.data(), block_contents.data.size(), &uncompressed_block_contents, format_version, ioptions, memory_allocator); if (!s.ok()) { return s; } rep_->create_context.Create(&block_holder, std::move(uncompressed_block_contents)); } else { rep_->create_context.Create(&block_holder, std::move(block_contents)); } // insert into uncompressed block cache if (block_cache && block_holder->own_bytes()) { size_t charge = block_holder->ApproximateMemoryUsage(); BlockCacheTypedHandle* cache_handle = nullptr; s = block_cache.InsertFull(cache_key, block_holder.get(), charge, &cache_handle, GetCachePriority(), rep_->ioptions.lowest_used_cache_tier); if (s.ok()) { assert(cache_handle != nullptr); out_parsed_block->SetCachedValue(block_holder.release(), block_cache.get(), cache_handle); UpdateCacheInsertionMetrics(TBlocklike::kBlockType, get_context, charge, s.IsOkOverwritten(), rep_->ioptions.stats); } else { RecordTick(statistics, BLOCK_CACHE_ADD_FAILURES); } } else { out_parsed_block->SetOwnedValue(std::move(block_holder)); } return s; } std::unique_ptr BlockBasedTable::CreateFilterBlockReader( const ReadOptions& ro, FilePrefetchBuffer* prefetch_buffer, bool use_cache, bool prefetch, bool pin, BlockCacheLookupContext* lookup_context) { auto& rep = rep_; auto filter_type = rep->filter_type; if (filter_type == Rep::FilterType::kNoFilter) { return std::unique_ptr(); } assert(rep->filter_policy); switch (filter_type) { case Rep::FilterType::kPartitionedFilter: return PartitionedFilterBlockReader::Create( this, ro, prefetch_buffer, use_cache, prefetch, pin, lookup_context); case Rep::FilterType::kFullFilter: return FullFilterBlockReader::Create(this, ro, prefetch_buffer, use_cache, prefetch, pin, lookup_context); default: // filter_type is either kNoFilter (exited the function at the first if), // or it must be covered in this switch block assert(false); return std::unique_ptr(); } } // disable_prefix_seek should be set to true when prefix_extractor found in SST // differs from the one in mutable_cf_options and index type is HashBasedIndex InternalIteratorBase* BlockBasedTable::NewIndexIterator( const ReadOptions& read_options, bool disable_prefix_seek, IndexBlockIter* input_iter, GetContext* get_context, BlockCacheLookupContext* lookup_context) const { assert(rep_ != nullptr); assert(rep_->index_reader != nullptr); // We don't return pinned data from index blocks, so no need // to set `block_contents_pinned`. return rep_->index_reader->NewIterator(read_options, disable_prefix_seek, input_iter, get_context, lookup_context); } // TODO? template <> DataBlockIter* BlockBasedTable::InitBlockIterator( const Rep* rep, Block* block, BlockType block_type, DataBlockIter* input_iter, bool block_contents_pinned) { return block->NewDataIterator(rep->internal_comparator.user_comparator(), rep->get_global_seqno(block_type), input_iter, rep->ioptions.stats, block_contents_pinned); } // TODO? template <> IndexBlockIter* BlockBasedTable::InitBlockIterator( const Rep* rep, Block* block, BlockType block_type, IndexBlockIter* input_iter, bool block_contents_pinned) { return block->NewIndexIterator( rep->internal_comparator.user_comparator(), rep->get_global_seqno(block_type), input_iter, rep->ioptions.stats, /* total_order_seek */ true, rep->index_has_first_key, rep->index_key_includes_seq, rep->index_value_is_full, block_contents_pinned); } // If contents is nullptr, this function looks up the block caches for the // data block referenced by handle, and read the block from disk if necessary. // If contents is non-null, it skips the cache lookup and disk read, since // the caller has already read it. In both cases, if ro.fill_cache is true, // it inserts the block into the block cache. template WithBlocklikeCheck BlockBasedTable::MaybeReadBlockAndLoadToCache( FilePrefetchBuffer* prefetch_buffer, const ReadOptions& ro, const BlockHandle& handle, const UncompressionDict& uncompression_dict, bool for_compaction, CachableEntry* out_parsed_block, GetContext* get_context, BlockCacheLookupContext* lookup_context, BlockContents* contents, bool async_read) const { assert(out_parsed_block != nullptr); const bool no_io = (ro.read_tier == kBlockCacheTier); BlockCacheInterface block_cache{ rep_->table_options.block_cache.get()}; // First, try to get the block from the cache // // If either block cache is enabled, we'll try to read from it. Status s; CacheKey key_data; Slice key; bool is_cache_hit = false; if (block_cache) { // create key for block cache key_data = GetCacheKey(rep_->base_cache_key, handle); key = key_data.AsSlice(); if (!contents) { s = GetDataBlockFromCache(key, block_cache, out_parsed_block, get_context); // Value could still be null at this point, so check the cache handle // and update the read pattern for prefetching if (out_parsed_block->GetValue() || out_parsed_block->GetCacheHandle()) { // TODO(haoyu): Differentiate cache hit on uncompressed block cache and // compressed block cache. is_cache_hit = true; if (prefetch_buffer) { // Update the block details so that PrefetchBuffer can use the read // pattern to determine if reads are sequential or not for // prefetching. It should also take in account blocks read from cache. prefetch_buffer->UpdateReadPattern( handle.offset(), BlockSizeWithTrailer(handle), ro.adaptive_readahead /*decrease_readahead_size*/); } } } // Can't find the block from the cache. If I/O is allowed, read from the // file. if (out_parsed_block->GetValue() == nullptr && out_parsed_block->GetCacheHandle() == nullptr && !no_io && ro.fill_cache) { Statistics* statistics = rep_->ioptions.stats; const bool maybe_compressed = TBlocklike::kBlockType != BlockType::kFilter && TBlocklike::kBlockType != BlockType::kCompressionDictionary && rep_->blocks_maybe_compressed; const bool do_uncompress = maybe_compressed; CompressionType contents_comp_type; // Maybe serialized or uncompressed BlockContents tmp_contents; if (!contents) { Histograms histogram = for_compaction ? READ_BLOCK_COMPACTION_MICROS : READ_BLOCK_GET_MICROS; StopWatch sw(rep_->ioptions.clock, statistics, histogram); BlockFetcher block_fetcher( rep_->file.get(), prefetch_buffer, rep_->footer, ro, handle, &tmp_contents, rep_->ioptions, do_uncompress, maybe_compressed, TBlocklike::kBlockType, uncompression_dict, rep_->persistent_cache_options, GetMemoryAllocator(rep_->table_options), /*allocator=*/nullptr); // If prefetch_buffer is not allocated, it will fallback to synchronous // reading of block contents. if (async_read && prefetch_buffer != nullptr) { s = block_fetcher.ReadAsyncBlockContents(); if (!s.ok()) { return s; } } else { s = block_fetcher.ReadBlockContents(); } contents_comp_type = block_fetcher.get_compression_type(); contents = &tmp_contents; if (get_context) { switch (TBlocklike::kBlockType) { case BlockType::kIndex: ++get_context->get_context_stats_.num_index_read; break; case BlockType::kFilter: case BlockType::kFilterPartitionIndex: ++get_context->get_context_stats_.num_filter_read; break; default: break; } } } else { contents_comp_type = GetBlockCompressionType(*contents); } if (s.ok()) { // If filling cache is allowed and a cache is configured, try to put the // block to the cache. s = PutDataBlockToCache( key, block_cache, out_parsed_block, std::move(*contents), contents_comp_type, uncompression_dict, GetMemoryAllocator(rep_->table_options), get_context); } } } // TODO: optimize so that lookup_context != nullptr implies the others if (block_cache_tracer_ && block_cache_tracer_->is_tracing_enabled() && lookup_context) { SaveLookupContextOrTraceRecord( key, is_cache_hit, ro, out_parsed_block->GetValue(), lookup_context); } assert(s.ok() || out_parsed_block->GetValue() == nullptr); return s; } template WithBlocklikeCheck BlockBasedTable::SaveLookupContextOrTraceRecord( const Slice& block_key, bool is_cache_hit, const ReadOptions& ro, const TBlocklike* parsed_block_value, BlockCacheLookupContext* lookup_context) const { assert(lookup_context); size_t usage = 0; uint64_t nkeys = 0; if (parsed_block_value) { // Approximate the number of keys in the block using restarts. int interval = rep_->table_options.block_restart_interval; nkeys = interval * GetBlockNumRestarts(*parsed_block_value); // On average, the last restart should be just over half utilized. // Specifically, 1..N should be N/2 + 0.5. For example, 7 -> 4, 8 -> 4.5. // Use the get_id to alternate between rounding up vs. down. if (nkeys > 0) { bool rounding = static_cast(lookup_context->get_id) & 1; nkeys -= (interval - rounding) / 2; } usage = parsed_block_value->ApproximateMemoryUsage(); } TraceType trace_block_type = TraceType::kTraceMax; switch (TBlocklike::kBlockType) { case BlockType::kData: trace_block_type = TraceType::kBlockTraceDataBlock; break; case BlockType::kFilter: case BlockType::kFilterPartitionIndex: trace_block_type = TraceType::kBlockTraceFilterBlock; break; case BlockType::kCompressionDictionary: trace_block_type = TraceType::kBlockTraceUncompressionDictBlock; break; case BlockType::kRangeDeletion: trace_block_type = TraceType::kBlockTraceRangeDeletionBlock; break; case BlockType::kIndex: trace_block_type = TraceType::kBlockTraceIndexBlock; break; default: // This cannot happen. assert(false); break; } const bool no_io = ro.read_tier == kBlockCacheTier; bool no_insert = no_io || !ro.fill_cache; if (BlockCacheTraceHelper::IsGetOrMultiGetOnDataBlock( trace_block_type, lookup_context->caller)) { // Make a copy of the block key here since it will be logged later. lookup_context->FillLookupContext(is_cache_hit, no_insert, trace_block_type, /*block_size=*/usage, block_key.ToString(), nkeys); // Defer logging the access to Get() and MultiGet() to trace additional // information, e.g., referenced_key } else { // Avoid making copy of block_key if it doesn't need to be saved in // BlockCacheLookupContext lookup_context->FillLookupContext(is_cache_hit, no_insert, trace_block_type, /*block_size=*/usage, /*block_key=*/{}, nkeys); // Fill in default values for irrelevant/unknown fields FinishTraceRecord(*lookup_context, block_key, lookup_context->referenced_key, /*does_referenced_key_exist*/ false, /*referenced_data_size*/ 0); } } void BlockBasedTable::FinishTraceRecord( const BlockCacheLookupContext& lookup_context, const Slice& block_key, const Slice& referenced_key, bool does_referenced_key_exist, uint64_t referenced_data_size) const { // Avoid making copy of referenced_key if it doesn't need to be saved in // BlockCacheLookupContext BlockCacheTraceRecord access_record( rep_->ioptions.clock->NowMicros(), /*block_key=*/"", lookup_context.block_type, lookup_context.block_size, rep_->cf_id_for_tracing(), /*cf_name=*/"", rep_->level_for_tracing(), rep_->sst_number_for_tracing(), lookup_context.caller, lookup_context.is_cache_hit, lookup_context.no_insert, lookup_context.get_id, lookup_context.get_from_user_specified_snapshot, /*referenced_key=*/"", referenced_data_size, lookup_context.num_keys_in_block, does_referenced_key_exist); // TODO: Should handle status here? block_cache_tracer_ ->WriteBlockAccess(access_record, block_key, rep_->cf_name_for_tracing(), referenced_key) .PermitUncheckedError(); } template WithBlocklikeCheck BlockBasedTable::RetrieveBlock( FilePrefetchBuffer* prefetch_buffer, const ReadOptions& ro, const BlockHandle& handle, const UncompressionDict& uncompression_dict, CachableEntry* out_parsed_block, GetContext* get_context, BlockCacheLookupContext* lookup_context, bool for_compaction, bool use_cache, bool async_read) const { assert(out_parsed_block); assert(out_parsed_block->IsEmpty()); Status s; if (use_cache) { s = MaybeReadBlockAndLoadToCache( prefetch_buffer, ro, handle, uncompression_dict, for_compaction, out_parsed_block, get_context, lookup_context, /*contents=*/nullptr, async_read); if (!s.ok()) { return s; } if (out_parsed_block->GetValue() != nullptr || out_parsed_block->GetCacheHandle() != nullptr) { assert(s.ok()); return s; } } assert(out_parsed_block->IsEmpty()); const bool no_io = ro.read_tier == kBlockCacheTier; if (no_io) { return Status::Incomplete("no blocking io"); } const bool maybe_compressed = TBlocklike::kBlockType != BlockType::kFilter && TBlocklike::kBlockType != BlockType::kCompressionDictionary && rep_->blocks_maybe_compressed; std::unique_ptr block; { Histograms histogram = for_compaction ? READ_BLOCK_COMPACTION_MICROS : READ_BLOCK_GET_MICROS; StopWatch sw(rep_->ioptions.clock, rep_->ioptions.stats, histogram); s = ReadAndParseBlockFromFile( rep_->file.get(), prefetch_buffer, rep_->footer, ro, handle, &block, rep_->ioptions, rep_->create_context, maybe_compressed, uncompression_dict, rep_->persistent_cache_options, GetMemoryAllocator(rep_->table_options), for_compaction, async_read); if (get_context) { switch (TBlocklike::kBlockType) { case BlockType::kIndex: ++(get_context->get_context_stats_.num_index_read); break; case BlockType::kFilter: case BlockType::kFilterPartitionIndex: ++(get_context->get_context_stats_.num_filter_read); break; default: break; } } } if (!s.ok()) { return s; } out_parsed_block->SetOwnedValue(std::move(block)); assert(s.ok()); return s; } BlockBasedTable::PartitionedIndexIteratorState::PartitionedIndexIteratorState( const BlockBasedTable* table, UnorderedMap>* block_map) : table_(table), block_map_(block_map) {} InternalIteratorBase* BlockBasedTable::PartitionedIndexIteratorState::NewSecondaryIterator( const BlockHandle& handle) { // Return a block iterator on the index partition auto block = block_map_->find(handle.offset()); // block_map_ must be exhaustive if (block == block_map_->end()) { assert(false); // Signal problem to caller return nullptr; } const Rep* rep = table_->get_rep(); assert(rep); Statistics* kNullStats = nullptr; // We don't return pinned data from index blocks, so no need // to set `block_contents_pinned`. return block->second.GetValue()->NewIndexIterator( rep->internal_comparator.user_comparator(), rep->get_global_seqno(BlockType::kIndex), nullptr, kNullStats, true, rep->index_has_first_key, rep->index_key_includes_seq, rep->index_value_is_full); } // This will be broken if the user specifies an unusual implementation // of Options.comparator, or if the user specifies an unusual // definition of prefixes in BlockBasedTableOptions.filter_policy. // In particular, we require the following three properties: // // 1) key.starts_with(prefix(key)) // 2) Compare(prefix(key), key) <= 0. // 3) If Compare(key1, key2) <= 0, then Compare(prefix(key1), prefix(key2)) <= 0 // // If read_options.read_tier == kBlockCacheTier, this method will do no I/O and // will return true if the filter block is not in memory and not found in block // cache. // // REQUIRES: this method shouldn't be called while the DB lock is held. bool BlockBasedTable::PrefixRangeMayMatch( const Slice& internal_key, const ReadOptions& read_options, const SliceTransform* options_prefix_extractor, const bool need_upper_bound_check, BlockCacheLookupContext* lookup_context, bool* filter_checked) const { if (!rep_->filter_policy) { return true; } const SliceTransform* prefix_extractor; if (rep_->table_prefix_extractor == nullptr) { if (need_upper_bound_check) { return true; } prefix_extractor = options_prefix_extractor; } else { prefix_extractor = rep_->table_prefix_extractor.get(); } auto ts_sz = rep_->internal_comparator.user_comparator()->timestamp_size(); auto user_key_without_ts = ExtractUserKeyAndStripTimestamp(internal_key, ts_sz); if (!prefix_extractor->InDomain(user_key_without_ts)) { return true; } bool may_match = true; FilterBlockReader* const filter = rep_->filter.get(); *filter_checked = false; if (filter != nullptr) { const bool no_io = read_options.read_tier == kBlockCacheTier; const Slice* const const_ikey_ptr = &internal_key; may_match = filter->RangeMayExist( read_options.iterate_upper_bound, user_key_without_ts, prefix_extractor, rep_->internal_comparator.user_comparator(), const_ikey_ptr, filter_checked, need_upper_bound_check, no_io, lookup_context, read_options); } return may_match; } bool BlockBasedTable::PrefixExtractorChanged( const SliceTransform* prefix_extractor) const { if (prefix_extractor == nullptr) { return true; } else if (prefix_extractor == rep_->table_prefix_extractor.get()) { return false; } else { return PrefixExtractorChangedHelper(rep_->table_properties.get(), prefix_extractor); } } Statistics* BlockBasedTable::GetStatistics() const { return rep_->ioptions.stats; } bool BlockBasedTable::IsLastLevel() const { return rep_->level == rep_->ioptions.num_levels - 1; } InternalIterator* BlockBasedTable::NewIterator( const ReadOptions& read_options, const SliceTransform* prefix_extractor, Arena* arena, bool skip_filters, TableReaderCaller caller, size_t compaction_readahead_size, bool allow_unprepared_value) { BlockCacheLookupContext lookup_context{caller}; bool need_upper_bound_check = read_options.auto_prefix_mode || PrefixExtractorChanged(prefix_extractor); std::unique_ptr> index_iter(NewIndexIterator( read_options, /*disable_prefix_seek=*/need_upper_bound_check && rep_->index_type == BlockBasedTableOptions::kHashSearch, /*input_iter=*/nullptr, /*get_context=*/nullptr, &lookup_context)); if (arena == nullptr) { return new BlockBasedTableIterator( this, read_options, rep_->internal_comparator, std::move(index_iter), !skip_filters && !read_options.total_order_seek && prefix_extractor != nullptr, need_upper_bound_check, prefix_extractor, caller, compaction_readahead_size, allow_unprepared_value); } else { auto* mem = arena->AllocateAligned(sizeof(BlockBasedTableIterator)); return new (mem) BlockBasedTableIterator( this, read_options, rep_->internal_comparator, std::move(index_iter), !skip_filters && !read_options.total_order_seek && prefix_extractor != nullptr, need_upper_bound_check, prefix_extractor, caller, compaction_readahead_size, allow_unprepared_value); } } FragmentedRangeTombstoneIterator* BlockBasedTable::NewRangeTombstoneIterator( const ReadOptions& read_options) { if (rep_->fragmented_range_dels == nullptr) { return nullptr; } SequenceNumber snapshot = kMaxSequenceNumber; if (read_options.snapshot != nullptr) { snapshot = read_options.snapshot->GetSequenceNumber(); } return new FragmentedRangeTombstoneIterator(rep_->fragmented_range_dels, rep_->internal_comparator, snapshot, read_options.timestamp); } bool BlockBasedTable::FullFilterKeyMayMatch( FilterBlockReader* filter, const Slice& internal_key, const bool no_io, const SliceTransform* prefix_extractor, GetContext* get_context, BlockCacheLookupContext* lookup_context, const ReadOptions& read_options) const { if (filter == nullptr) { return true; } Slice user_key = ExtractUserKey(internal_key); const Slice* const const_ikey_ptr = &internal_key; bool may_match = true; size_t ts_sz = rep_->internal_comparator.user_comparator()->timestamp_size(); Slice user_key_without_ts = StripTimestampFromUserKey(user_key, ts_sz); if (rep_->whole_key_filtering) { may_match = filter->KeyMayMatch(user_key_without_ts, no_io, const_ikey_ptr, get_context, lookup_context, read_options); if (may_match) { RecordTick(rep_->ioptions.stats, BLOOM_FILTER_FULL_POSITIVE); PERF_COUNTER_BY_LEVEL_ADD(bloom_filter_full_positive, 1, rep_->level); } else { RecordTick(rep_->ioptions.stats, BLOOM_FILTER_USEFUL); PERF_COUNTER_BY_LEVEL_ADD(bloom_filter_useful, 1, rep_->level); } } else if (!PrefixExtractorChanged(prefix_extractor) && prefix_extractor->InDomain(user_key_without_ts)) { // FIXME ^^^: there should be no reason for Get() to depend on current // prefix_extractor at all. It should always use table_prefix_extractor. may_match = filter->PrefixMayMatch( prefix_extractor->Transform(user_key_without_ts), no_io, const_ikey_ptr, get_context, lookup_context, read_options); RecordTick(rep_->ioptions.stats, BLOOM_FILTER_PREFIX_CHECKED); if (may_match) { // Includes prefix stats PERF_COUNTER_BY_LEVEL_ADD(bloom_filter_full_positive, 1, rep_->level); } else { RecordTick(rep_->ioptions.stats, BLOOM_FILTER_PREFIX_USEFUL); // Includes prefix stats PERF_COUNTER_BY_LEVEL_ADD(bloom_filter_useful, 1, rep_->level); } } return may_match; } void BlockBasedTable::FullFilterKeysMayMatch( FilterBlockReader* filter, MultiGetRange* range, const bool no_io, const SliceTransform* prefix_extractor, BlockCacheLookupContext* lookup_context, const ReadOptions& read_options) const { if (filter == nullptr) { return; } uint64_t before_keys = range->KeysLeft(); assert(before_keys > 0); // Caller should ensure if (rep_->whole_key_filtering) { filter->KeysMayMatch(range, no_io, lookup_context, read_options); uint64_t after_keys = range->KeysLeft(); if (after_keys) { RecordTick(rep_->ioptions.stats, BLOOM_FILTER_FULL_POSITIVE, after_keys); PERF_COUNTER_BY_LEVEL_ADD(bloom_filter_full_positive, after_keys, rep_->level); } uint64_t filtered_keys = before_keys - after_keys; if (filtered_keys) { RecordTick(rep_->ioptions.stats, BLOOM_FILTER_USEFUL, filtered_keys); PERF_COUNTER_BY_LEVEL_ADD(bloom_filter_useful, filtered_keys, rep_->level); } } else if (!PrefixExtractorChanged(prefix_extractor)) { // FIXME ^^^: there should be no reason for MultiGet() to depend on current // prefix_extractor at all. It should always use table_prefix_extractor. filter->PrefixesMayMatch(range, prefix_extractor, false, lookup_context, read_options); RecordTick(rep_->ioptions.stats, BLOOM_FILTER_PREFIX_CHECKED, before_keys); uint64_t after_keys = range->KeysLeft(); if (after_keys) { // Includes prefix stats PERF_COUNTER_BY_LEVEL_ADD(bloom_filter_full_positive, after_keys, rep_->level); } uint64_t filtered_keys = before_keys - after_keys; if (filtered_keys) { RecordTick(rep_->ioptions.stats, BLOOM_FILTER_PREFIX_USEFUL, filtered_keys); // Includes prefix stats PERF_COUNTER_BY_LEVEL_ADD(bloom_filter_useful, filtered_keys, rep_->level); } } } Status BlockBasedTable::ApproximateKeyAnchors(const ReadOptions& read_options, std::vector& anchors) { // We iterator the whole index block here. More efficient implementation // is possible if we push this operation into IndexReader. For example, we // can directly sample from restart block entries in the index block and // only read keys needed. Here we take a simple solution. Performance is // likely not to be a problem. We are compacting the whole file, so all // keys will be read out anyway. An extra read to index block might be // a small share of the overhead. We can try to optimize if needed. // // `CacheDependencies()` brings all the blocks into cache using one I/O. That // way the full index scan usually finds the index data it is looking for in // cache rather than doing an I/O for each "dependency" (partition). Status s = rep_->index_reader->CacheDependencies( read_options, false /* pin */, nullptr /* prefetch_buffer */); if (!s.ok()) { return s; } IndexBlockIter iiter_on_stack; auto iiter = NewIndexIterator( read_options, /*disable_prefix_seek=*/false, &iiter_on_stack, /*get_context=*/nullptr, /*lookup_context=*/nullptr); std::unique_ptr> iiter_unique_ptr; if (iiter != &iiter_on_stack) { iiter_unique_ptr.reset(iiter); } // If needed the threshold could be more adaptive. For example, it can be // based on size, so that a larger will be sampled to more partitions than a // smaller file. The size might also need to be passed in by the caller based // on total compaction size. const uint64_t kMaxNumAnchors = uint64_t{128}; uint64_t num_blocks = this->GetTableProperties()->num_data_blocks; uint64_t num_blocks_per_anchor = num_blocks / kMaxNumAnchors; if (num_blocks_per_anchor == 0) { num_blocks_per_anchor = 1; } uint64_t count = 0; std::string last_key; uint64_t range_size = 0; uint64_t prev_offset = 0; for (iiter->SeekToFirst(); iiter->Valid(); iiter->Next()) { const BlockHandle& bh = iiter->value().handle; range_size += bh.offset() + bh.size() - prev_offset; prev_offset = bh.offset() + bh.size(); if (++count % num_blocks_per_anchor == 0) { count = 0; anchors.emplace_back(iiter->user_key(), range_size); range_size = 0; } else { last_key = iiter->user_key().ToString(); } } if (count != 0) { anchors.emplace_back(last_key, range_size); } return Status::OK(); } bool BlockBasedTable::TimestampMayMatch(const ReadOptions& read_options) const { if (read_options.timestamp != nullptr && !rep_->min_timestamp.empty()) { RecordTick(rep_->ioptions.stats, TIMESTAMP_FILTER_TABLE_CHECKED); auto read_ts = read_options.timestamp; auto comparator = rep_->internal_comparator.user_comparator(); if (comparator->CompareTimestamp(*read_ts, rep_->min_timestamp) < 0) { RecordTick(rep_->ioptions.stats, TIMESTAMP_FILTER_TABLE_FILTERED); return false; } } return true; } Status BlockBasedTable::Get(const ReadOptions& read_options, const Slice& key, GetContext* get_context, const SliceTransform* prefix_extractor, bool skip_filters) { // Similar to Bloom filter !may_match // If timestamp is beyond the range of the table, skip if (!TimestampMayMatch(read_options)) { return Status::OK(); } assert(key.size() >= 8); // key must be internal key assert(get_context != nullptr); Status s; const bool no_io = read_options.read_tier == kBlockCacheTier; FilterBlockReader* const filter = !skip_filters ? rep_->filter.get() : nullptr; // First check the full filter // If full filter not useful, Then go into each block uint64_t tracing_get_id = get_context->get_tracing_get_id(); BlockCacheLookupContext lookup_context{ TableReaderCaller::kUserGet, tracing_get_id, /*get_from_user_specified_snapshot=*/read_options.snapshot != nullptr}; if (block_cache_tracer_ && block_cache_tracer_->is_tracing_enabled()) { // Trace the key since it contains both user key and sequence number. lookup_context.referenced_key = key.ToString(); lookup_context.get_from_user_specified_snapshot = read_options.snapshot != nullptr; } TEST_SYNC_POINT("BlockBasedTable::Get:BeforeFilterMatch"); const bool may_match = FullFilterKeyMayMatch(filter, key, no_io, prefix_extractor, get_context, &lookup_context, read_options); TEST_SYNC_POINT("BlockBasedTable::Get:AfterFilterMatch"); if (may_match) { IndexBlockIter iiter_on_stack; // if prefix_extractor found in block differs from options, disable // BlockPrefixIndex. Only do this check when index_type is kHashSearch. bool need_upper_bound_check = false; if (rep_->index_type == BlockBasedTableOptions::kHashSearch) { need_upper_bound_check = PrefixExtractorChanged(prefix_extractor); } auto iiter = NewIndexIterator(read_options, need_upper_bound_check, &iiter_on_stack, get_context, &lookup_context); std::unique_ptr> iiter_unique_ptr; if (iiter != &iiter_on_stack) { iiter_unique_ptr.reset(iiter); } size_t ts_sz = rep_->internal_comparator.user_comparator()->timestamp_size(); bool matched = false; // if such user key matched a key in SST bool done = false; for (iiter->Seek(key); iiter->Valid() && !done; iiter->Next()) { IndexValue v = iiter->value(); if (!v.first_internal_key.empty() && !skip_filters && UserComparatorWrapper(rep_->internal_comparator.user_comparator()) .CompareWithoutTimestamp( ExtractUserKey(key), ExtractUserKey(v.first_internal_key)) < 0) { // The requested key falls between highest key in previous block and // lowest key in current block. break; } BlockCacheLookupContext lookup_data_block_context{ TableReaderCaller::kUserGet, tracing_get_id, /*get_from_user_specified_snapshot=*/read_options.snapshot != nullptr}; bool does_referenced_key_exist = false; DataBlockIter biter; uint64_t referenced_data_size = 0; Status tmp_status; NewDataBlockIterator( read_options, v.handle, &biter, BlockType::kData, get_context, &lookup_data_block_context, /*prefetch_buffer=*/nullptr, /*for_compaction=*/false, /*async_read=*/false, tmp_status); if (no_io && biter.status().IsIncomplete()) { // couldn't get block from block_cache // Update Saver.state to Found because we are only looking for // whether we can guarantee the key is not there when "no_io" is set get_context->MarkKeyMayExist(); s = biter.status(); break; } if (!biter.status().ok()) { s = biter.status(); break; } bool may_exist = biter.SeekForGet(key); // If user-specified timestamp is supported, we cannot end the search // just because hash index lookup indicates the key+ts does not exist. if (!may_exist && ts_sz == 0) { // HashSeek cannot find the key this block and the the iter is not // the end of the block, i.e. cannot be in the following blocks // either. In this case, the seek_key cannot be found, so we break // from the top level for-loop. done = true; } else { // Call the *saver function on each entry/block until it returns false for (; biter.Valid(); biter.Next()) { ParsedInternalKey parsed_key; Status pik_status = ParseInternalKey( biter.key(), &parsed_key, false /* log_err_key */); // TODO if (!pik_status.ok()) { s = pik_status; } if (!get_context->SaveValue( parsed_key, biter.value(), &matched, biter.IsValuePinned() ? &biter : nullptr)) { if (get_context->State() == GetContext::GetState::kFound) { does_referenced_key_exist = true; referenced_data_size = biter.key().size() + biter.value().size(); } done = true; break; } } s = biter.status(); if (!s.ok()) { break; } } // Write the block cache access record. if (block_cache_tracer_ && block_cache_tracer_->is_tracing_enabled()) { // Avoid making copy of block_key, cf_name, and referenced_key when // constructing the access record. Slice referenced_key; if (does_referenced_key_exist) { referenced_key = biter.key(); } else { referenced_key = key; } FinishTraceRecord(lookup_data_block_context, lookup_data_block_context.block_key, referenced_key, does_referenced_key_exist, referenced_data_size); } if (done) { // Avoid the extra Next which is expensive in two-level indexes break; } } if (matched && filter != nullptr) { if (rep_->whole_key_filtering) { RecordTick(rep_->ioptions.stats, BLOOM_FILTER_FULL_TRUE_POSITIVE); } else { RecordTick(rep_->ioptions.stats, BLOOM_FILTER_PREFIX_TRUE_POSITIVE); } // Includes prefix stats PERF_COUNTER_BY_LEVEL_ADD(bloom_filter_full_true_positive, 1, rep_->level); } if (s.ok() && !iiter->status().IsNotFound()) { s = iiter->status(); } } return s; } Status BlockBasedTable::MultiGetFilter(const ReadOptions& read_options, const SliceTransform* prefix_extractor, MultiGetRange* mget_range) { if (mget_range->empty()) { // Caller should ensure non-empty (performance bug) assert(false); return Status::OK(); // Nothing to do } FilterBlockReader* const filter = rep_->filter.get(); if (!filter) { return Status::OK(); } // First check the full filter // If full filter not useful, Then go into each block const bool no_io = read_options.read_tier == kBlockCacheTier; uint64_t tracing_mget_id = BlockCacheTraceHelper::kReservedGetId; if (mget_range->begin()->get_context) { tracing_mget_id = mget_range->begin()->get_context->get_tracing_get_id(); } BlockCacheLookupContext lookup_context{ TableReaderCaller::kUserMultiGet, tracing_mget_id, /*_get_from_user_specified_snapshot=*/read_options.snapshot != nullptr}; FullFilterKeysMayMatch(filter, mget_range, no_io, prefix_extractor, &lookup_context, read_options); return Status::OK(); } Status BlockBasedTable::Prefetch(const ReadOptions& read_options, const Slice* const begin, const Slice* const end) { auto& comparator = rep_->internal_comparator; UserComparatorWrapper user_comparator(comparator.user_comparator()); // pre-condition if (begin && end && comparator.Compare(*begin, *end) > 0) { return Status::InvalidArgument(*begin, *end); } BlockCacheLookupContext lookup_context{TableReaderCaller::kPrefetch}; IndexBlockIter iiter_on_stack; auto iiter = NewIndexIterator(read_options, /*need_upper_bound_check=*/false, &iiter_on_stack, /*get_context=*/nullptr, &lookup_context); std::unique_ptr> iiter_unique_ptr; if (iiter != &iiter_on_stack) { iiter_unique_ptr = std::unique_ptr>(iiter); } if (!iiter->status().ok()) { // error opening index iterator return iiter->status(); } // indicates if we are on the last page that need to be pre-fetched bool prefetching_boundary_page = false; for (begin ? iiter->Seek(*begin) : iiter->SeekToFirst(); iiter->Valid(); iiter->Next()) { BlockHandle block_handle = iiter->value().handle; const bool is_user_key = !rep_->index_key_includes_seq; if (end && ((!is_user_key && comparator.Compare(iiter->key(), *end) >= 0) || (is_user_key && user_comparator.Compare(iiter->key(), ExtractUserKey(*end)) >= 0))) { if (prefetching_boundary_page) { break; } // The index entry represents the last key in the data block. // We should load this page into memory as well, but no more prefetching_boundary_page = true; } // Load the block specified by the block_handle into the block cache DataBlockIter biter; Status tmp_status; NewDataBlockIterator( read_options, block_handle, &biter, /*type=*/BlockType::kData, /*get_context=*/nullptr, &lookup_context, /*prefetch_buffer=*/nullptr, /*for_compaction=*/false, /*async_read=*/false, tmp_status); if (!biter.status().ok()) { // there was an unexpected error while pre-fetching return biter.status(); } } return Status::OK(); } Status BlockBasedTable::VerifyChecksum(const ReadOptions& read_options, TableReaderCaller caller) { Status s; // Check Meta blocks std::unique_ptr metaindex; std::unique_ptr metaindex_iter; s = ReadMetaIndexBlock(read_options, nullptr /* prefetch buffer */, &metaindex, &metaindex_iter); if (s.ok()) { s = VerifyChecksumInMetaBlocks(read_options, metaindex_iter.get()); if (!s.ok()) { return s; } } else { return s; } // Check Data blocks IndexBlockIter iiter_on_stack; BlockCacheLookupContext context{caller}; InternalIteratorBase* iiter = NewIndexIterator( read_options, /*disable_prefix_seek=*/false, &iiter_on_stack, /*get_context=*/nullptr, &context); std::unique_ptr> iiter_unique_ptr; if (iiter != &iiter_on_stack) { iiter_unique_ptr = std::unique_ptr>(iiter); } if (!iiter->status().ok()) { // error opening index iterator return iiter->status(); } s = VerifyChecksumInBlocks(read_options, iiter); return s; } Status BlockBasedTable::VerifyChecksumInBlocks( const ReadOptions& read_options, InternalIteratorBase* index_iter) { Status s; // We are scanning the whole file, so no need to do exponential // increasing of the buffer size. size_t readahead_size = (read_options.readahead_size != 0) ? read_options.readahead_size : rep_->table_options.max_auto_readahead_size; // FilePrefetchBuffer doesn't work in mmap mode and readahead is not // needed there. FilePrefetchBuffer prefetch_buffer( readahead_size /* readahead_size */, readahead_size /* max_readahead_size */, !rep_->ioptions.allow_mmap_reads /* enable */); for (index_iter->SeekToFirst(); index_iter->Valid(); index_iter->Next()) { s = index_iter->status(); if (!s.ok()) { break; } BlockHandle handle = index_iter->value().handle; BlockContents contents; BlockFetcher block_fetcher( rep_->file.get(), &prefetch_buffer, rep_->footer, read_options, handle, &contents, rep_->ioptions, false /* decompress */, false /*maybe_compressed*/, BlockType::kData, UncompressionDict::GetEmptyDict(), rep_->persistent_cache_options); s = block_fetcher.ReadBlockContents(); if (!s.ok()) { break; } } if (s.ok()) { // In the case of two level indexes, we would have exited the above loop // by checking index_iter->Valid(), but Valid() might have returned false // due to an IO error. So check the index_iter status s = index_iter->status(); } return s; } BlockType BlockBasedTable::GetBlockTypeForMetaBlockByName( const Slice& meta_block_name) { if (meta_block_name.starts_with(kFullFilterBlockPrefix)) { return BlockType::kFilter; } if (meta_block_name.starts_with(kPartitionedFilterBlockPrefix)) { return BlockType::kFilterPartitionIndex; } if (meta_block_name == kPropertiesBlockName) { return BlockType::kProperties; } if (meta_block_name == kCompressionDictBlockName) { return BlockType::kCompressionDictionary; } if (meta_block_name == kRangeDelBlockName) { return BlockType::kRangeDeletion; } if (meta_block_name == kHashIndexPrefixesBlock) { return BlockType::kHashIndexPrefixes; } if (meta_block_name == kHashIndexPrefixesMetadataBlock) { return BlockType::kHashIndexMetadata; } if (meta_block_name.starts_with(kObsoleteFilterBlockPrefix)) { // Obsolete but possible in old files return BlockType::kInvalid; } assert(false); return BlockType::kInvalid; } Status BlockBasedTable::VerifyChecksumInMetaBlocks( const ReadOptions& read_options, InternalIteratorBase* index_iter) { Status s; for (index_iter->SeekToFirst(); index_iter->Valid(); index_iter->Next()) { s = index_iter->status(); if (!s.ok()) { break; } BlockHandle handle; Slice input = index_iter->value(); s = handle.DecodeFrom(&input); BlockContents contents; const Slice meta_block_name = index_iter->key(); if (meta_block_name == kPropertiesBlockName) { // Unfortunate special handling for properties block checksum w/ // global seqno std::unique_ptr table_properties; s = ReadTablePropertiesHelper(read_options, handle, rep_->file.get(), nullptr /* prefetch_buffer */, rep_->footer, rep_->ioptions, &table_properties, nullptr /* memory_allocator */); } else { s = BlockFetcher( rep_->file.get(), nullptr /* prefetch buffer */, rep_->footer, read_options, handle, &contents, rep_->ioptions, false /* decompress */, false /*maybe_compressed*/, GetBlockTypeForMetaBlockByName(meta_block_name), UncompressionDict::GetEmptyDict(), rep_->persistent_cache_options) .ReadBlockContents(); } if (!s.ok()) { break; } } return s; } bool BlockBasedTable::TEST_BlockInCache(const BlockHandle& handle) const { assert(rep_ != nullptr); Cache* const cache = rep_->table_options.block_cache.get(); if (cache == nullptr) { return false; } CacheKey key = GetCacheKey(rep_->base_cache_key, handle); Cache::Handle* const cache_handle = cache->Lookup(key.AsSlice()); if (cache_handle == nullptr) { return false; } cache->Release(cache_handle); return true; } bool BlockBasedTable::TEST_KeyInCache(const ReadOptions& options, const Slice& key) { std::unique_ptr> iiter(NewIndexIterator( options, /*need_upper_bound_check=*/false, /*input_iter=*/nullptr, /*get_context=*/nullptr, /*lookup_context=*/nullptr)); iiter->Seek(key); assert(iiter->Valid()); return TEST_BlockInCache(iiter->value().handle); } // REQUIRES: The following fields of rep_ should have already been populated: // 1. file // 2. index_handle, // 3. options // 4. internal_comparator // 5. index_type Status BlockBasedTable::CreateIndexReader( const ReadOptions& ro, FilePrefetchBuffer* prefetch_buffer, InternalIterator* meta_iter, bool use_cache, bool prefetch, bool pin, BlockCacheLookupContext* lookup_context, std::unique_ptr* index_reader) { switch (rep_->index_type) { case BlockBasedTableOptions::kTwoLevelIndexSearch: { return PartitionIndexReader::Create(this, ro, prefetch_buffer, use_cache, prefetch, pin, lookup_context, index_reader); } case BlockBasedTableOptions::kBinarySearch: FALLTHROUGH_INTENDED; case BlockBasedTableOptions::kBinarySearchWithFirstKey: { return BinarySearchIndexReader::Create(this, ro, prefetch_buffer, use_cache, prefetch, pin, lookup_context, index_reader); } case BlockBasedTableOptions::kHashSearch: { if (!rep_->table_prefix_extractor) { ROCKS_LOG_WARN(rep_->ioptions.logger, "Missing prefix extractor for hash index. Fall back to" " binary search index."); return BinarySearchIndexReader::Create(this, ro, prefetch_buffer, use_cache, prefetch, pin, lookup_context, index_reader); } else { return HashIndexReader::Create(this, ro, prefetch_buffer, meta_iter, use_cache, prefetch, pin, lookup_context, index_reader); } } default: { std::string error_message = "Unrecognized index type: " + std::to_string(rep_->index_type); return Status::InvalidArgument(error_message.c_str()); } } } uint64_t BlockBasedTable::ApproximateDataOffsetOf( const InternalIteratorBase& index_iter, uint64_t data_size) const { assert(index_iter.status().ok()); if (index_iter.Valid()) { BlockHandle handle = index_iter.value().handle; return handle.offset(); } else { // The iterator is past the last key in the file. return data_size; } } uint64_t BlockBasedTable::GetApproximateDataSize() { // Should be in table properties unless super old version if (rep_->table_properties) { return rep_->table_properties->data_size; } // Fall back to rough estimate from footer return rep_->footer.metaindex_handle().offset(); } uint64_t BlockBasedTable::ApproximateOffsetOf(const ReadOptions& read_options, const Slice& key, TableReaderCaller caller) { uint64_t data_size = GetApproximateDataSize(); if (UNLIKELY(data_size == 0)) { // Hmm. Let's just split in half to avoid skewing one way or another, // since we don't know whether we're operating on lower bound or // upper bound. return rep_->file_size / 2; } BlockCacheLookupContext context(caller); IndexBlockIter iiter_on_stack; ReadOptions ro; ro.total_order_seek = true; ro.io_activity = read_options.io_activity; auto index_iter = NewIndexIterator(ro, /*disable_prefix_seek=*/true, /*input_iter=*/&iiter_on_stack, /*get_context=*/nullptr, /*lookup_context=*/&context); std::unique_ptr> iiter_unique_ptr; if (index_iter != &iiter_on_stack) { iiter_unique_ptr.reset(index_iter); } index_iter->Seek(key); uint64_t offset; if (index_iter->status().ok()) { offset = ApproximateDataOffsetOf(*index_iter, data_size); } else { // Split in half to avoid skewing one way or another, // since we don't know whether we're operating on lower bound or // upper bound. return rep_->file_size / 2; } // Pro-rate file metadata (incl filters) size-proportionally across data // blocks. double size_ratio = static_cast(offset) / static_cast(data_size); return static_cast(size_ratio * static_cast(rep_->file_size)); } uint64_t BlockBasedTable::ApproximateSize(const ReadOptions& read_options, const Slice& start, const Slice& end, TableReaderCaller caller) { assert(rep_->internal_comparator.Compare(start, end) <= 0); uint64_t data_size = GetApproximateDataSize(); if (UNLIKELY(data_size == 0)) { // Hmm. Assume whole file is involved, since we have lower and upper // bound. This likely skews the estimate if we consider that this function // is typically called with `[start, end]` fully contained in the file's // key-range. return rep_->file_size; } BlockCacheLookupContext context(caller); IndexBlockIter iiter_on_stack; ReadOptions ro; ro.total_order_seek = true; ro.io_activity = read_options.io_activity; auto index_iter = NewIndexIterator(ro, /*disable_prefix_seek=*/true, /*input_iter=*/&iiter_on_stack, /*get_context=*/nullptr, /*lookup_context=*/&context); std::unique_ptr> iiter_unique_ptr; if (index_iter != &iiter_on_stack) { iiter_unique_ptr.reset(index_iter); } index_iter->Seek(start); uint64_t start_offset; if (index_iter->status().ok()) { start_offset = ApproximateDataOffsetOf(*index_iter, data_size); } else { // Assume file is involved from the start. This likely skews the estimate // but is consistent with the above error handling. start_offset = 0; } index_iter->Seek(end); uint64_t end_offset; if (index_iter->status().ok()) { end_offset = ApproximateDataOffsetOf(*index_iter, data_size); } else { // Assume file is involved until the end. This likely skews the estimate // but is consistent with the above error handling. end_offset = data_size; } assert(end_offset >= start_offset); // Pro-rate file metadata (incl filters) size-proportionally across data // blocks. double size_ratio = static_cast(end_offset - start_offset) / static_cast(data_size); return static_cast(size_ratio * static_cast(rep_->file_size)); } bool BlockBasedTable::TEST_FilterBlockInCache() const { assert(rep_ != nullptr); return rep_->filter_type != Rep::FilterType::kNoFilter && TEST_BlockInCache(rep_->filter_handle); } bool BlockBasedTable::TEST_IndexBlockInCache() const { assert(rep_ != nullptr); return TEST_BlockInCache(rep_->footer.index_handle()); } Status BlockBasedTable::GetKVPairsFromDataBlocks( const ReadOptions& read_options, std::vector* kv_pair_blocks) { std::unique_ptr> blockhandles_iter( NewIndexIterator(read_options, /*need_upper_bound_check=*/false, /*input_iter=*/nullptr, /*get_context=*/nullptr, /*lookup_contex=*/nullptr)); Status s = blockhandles_iter->status(); if (!s.ok()) { // Cannot read Index Block return s; } for (blockhandles_iter->SeekToFirst(); blockhandles_iter->Valid(); blockhandles_iter->Next()) { s = blockhandles_iter->status(); if (!s.ok()) { break; } std::unique_ptr datablock_iter; Status tmp_status; datablock_iter.reset(NewDataBlockIterator( read_options, blockhandles_iter->value().handle, /*input_iter=*/nullptr, /*type=*/BlockType::kData, /*get_context=*/nullptr, /*lookup_context=*/nullptr, /*prefetch_buffer=*/nullptr, /*for_compaction=*/false, /*async_read=*/false, tmp_status)); s = datablock_iter->status(); if (!s.ok()) { // Error reading the block - Skipped continue; } KVPairBlock kv_pair_block; for (datablock_iter->SeekToFirst(); datablock_iter->Valid(); datablock_iter->Next()) { s = datablock_iter->status(); if (!s.ok()) { // Error reading the block - Skipped break; } const Slice& key = datablock_iter->key(); const Slice& value = datablock_iter->value(); std::string key_copy = std::string(key.data(), key.size()); std::string value_copy = std::string(value.data(), value.size()); kv_pair_block.push_back( std::make_pair(std::move(key_copy), std::move(value_copy))); } kv_pair_blocks->push_back(std::move(kv_pair_block)); } return Status::OK(); } Status BlockBasedTable::DumpTable(WritableFile* out_file) { WritableFileStringStreamAdapter out_file_wrapper(out_file); std::ostream out_stream(&out_file_wrapper); // Output Footer out_stream << "Footer Details:\n" "--------------------------------------\n"; out_stream << " " << rep_->footer.ToString() << "\n"; // Output MetaIndex out_stream << "Metaindex Details:\n" "--------------------------------------\n"; std::unique_ptr metaindex; std::unique_ptr metaindex_iter; // TODO: plumb Env::IOActivity const ReadOptions ro; Status s = ReadMetaIndexBlock(ro, nullptr /* prefetch_buffer */, &metaindex, &metaindex_iter); if (s.ok()) { for (metaindex_iter->SeekToFirst(); metaindex_iter->Valid(); metaindex_iter->Next()) { s = metaindex_iter->status(); if (!s.ok()) { return s; } if (metaindex_iter->key() == kPropertiesBlockName) { out_stream << " Properties block handle: " << metaindex_iter->value().ToString(true) << "\n"; } else if (metaindex_iter->key() == kCompressionDictBlockName) { out_stream << " Compression dictionary block handle: " << metaindex_iter->value().ToString(true) << "\n"; } else if (strstr(metaindex_iter->key().ToString().c_str(), "filter.rocksdb.") != nullptr) { out_stream << " Filter block handle: " << metaindex_iter->value().ToString(true) << "\n"; } else if (metaindex_iter->key() == kRangeDelBlockName) { out_stream << " Range deletion block handle: " << metaindex_iter->value().ToString(true) << "\n"; } } out_stream << "\n"; } else { return s; } // Output TableProperties const ROCKSDB_NAMESPACE::TableProperties* table_properties; table_properties = rep_->table_properties.get(); if (table_properties != nullptr) { out_stream << "Table Properties:\n" "--------------------------------------\n"; out_stream << " " << table_properties->ToString("\n ", ": ") << "\n"; } if (rep_->filter) { out_stream << "Filter Details:\n" "--------------------------------------\n"; out_stream << " " << rep_->filter->ToString() << "\n"; } // Output Index block s = DumpIndexBlock(out_stream); if (!s.ok()) { return s; } // Output compression dictionary if (rep_->uncompression_dict_reader) { CachableEntry uncompression_dict; s = rep_->uncompression_dict_reader->GetOrReadUncompressionDictionary( nullptr /* prefetch_buffer */, ro, false /* no_io */, false, /* verify_checksums */ nullptr /* get_context */, nullptr /* lookup_context */, &uncompression_dict); if (!s.ok()) { return s; } assert(uncompression_dict.GetValue()); const Slice& raw_dict = uncompression_dict.GetValue()->GetRawDict(); out_stream << "Compression Dictionary:\n" "--------------------------------------\n"; out_stream << " size (bytes): " << raw_dict.size() << "\n\n"; out_stream << " HEX " << raw_dict.ToString(true) << "\n\n"; } // Output range deletions block auto* range_del_iter = NewRangeTombstoneIterator(ro); if (range_del_iter != nullptr) { range_del_iter->SeekToFirst(); if (range_del_iter->Valid()) { out_stream << "Range deletions:\n" "--------------------------------------\n"; for (; range_del_iter->Valid(); range_del_iter->Next()) { DumpKeyValue(range_del_iter->key(), range_del_iter->value(), out_stream); } out_stream << "\n"; } delete range_del_iter; } // Output Data blocks s = DumpDataBlocks(out_stream); if (!s.ok()) { return s; } if (!out_stream.good()) { return Status::IOError("Failed to write to output file"); } return Status::OK(); } Status BlockBasedTable::DumpIndexBlock(std::ostream& out_stream) { out_stream << "Index Details:\n" "--------------------------------------\n"; // TODO: plumb Env::IOActivity const ReadOptions read_options; std::unique_ptr> blockhandles_iter( NewIndexIterator(read_options, /*need_upper_bound_check=*/false, /*input_iter=*/nullptr, /*get_context=*/nullptr, /*lookup_contex=*/nullptr)); Status s = blockhandles_iter->status(); if (!s.ok()) { out_stream << "Can not read Index Block \n\n"; return s; } out_stream << " Block key hex dump: Data block handle\n"; out_stream << " Block key ascii\n\n"; for (blockhandles_iter->SeekToFirst(); blockhandles_iter->Valid(); blockhandles_iter->Next()) { s = blockhandles_iter->status(); if (!s.ok()) { break; } Slice key = blockhandles_iter->key(); Slice user_key; InternalKey ikey; if (!rep_->index_key_includes_seq) { user_key = key; } else { ikey.DecodeFrom(key); user_key = ikey.user_key(); } out_stream << " HEX " << user_key.ToString(true) << ": " << blockhandles_iter->value().ToString(true, rep_->index_has_first_key) << " offset " << blockhandles_iter->value().handle.offset() << " size " << blockhandles_iter->value().handle.size() << "\n"; std::string str_key = user_key.ToString(); std::string res_key(""); char cspace = ' '; for (size_t i = 0; i < str_key.size(); i++) { res_key.append(&str_key[i], 1); res_key.append(1, cspace); } out_stream << " ASCII " << res_key << "\n"; out_stream << " ------\n"; } out_stream << "\n"; return Status::OK(); } Status BlockBasedTable::DumpDataBlocks(std::ostream& out_stream) { // TODO: plumb Env::IOActivity const ReadOptions read_options; std::unique_ptr> blockhandles_iter( NewIndexIterator(read_options, /*need_upper_bound_check=*/false, /*input_iter=*/nullptr, /*get_context=*/nullptr, /*lookup_contex=*/nullptr)); Status s = blockhandles_iter->status(); if (!s.ok()) { out_stream << "Can not read Index Block \n\n"; return s; } uint64_t datablock_size_min = std::numeric_limits::max(); uint64_t datablock_size_max = 0; uint64_t datablock_size_sum = 0; size_t block_id = 1; for (blockhandles_iter->SeekToFirst(); blockhandles_iter->Valid(); block_id++, blockhandles_iter->Next()) { s = blockhandles_iter->status(); if (!s.ok()) { break; } BlockHandle bh = blockhandles_iter->value().handle; uint64_t datablock_size = bh.size(); datablock_size_min = std::min(datablock_size_min, datablock_size); datablock_size_max = std::max(datablock_size_max, datablock_size); datablock_size_sum += datablock_size; out_stream << "Data Block # " << block_id << " @ " << blockhandles_iter->value().handle.ToString(true) << "\n"; out_stream << "--------------------------------------\n"; std::unique_ptr datablock_iter; Status tmp_status; datablock_iter.reset(NewDataBlockIterator( read_options, blockhandles_iter->value().handle, /*input_iter=*/nullptr, /*type=*/BlockType::kData, /*get_context=*/nullptr, /*lookup_context=*/nullptr, /*prefetch_buffer=*/nullptr, /*for_compaction=*/false, /*async_read=*/false, tmp_status)); s = datablock_iter->status(); if (!s.ok()) { out_stream << "Error reading the block - Skipped \n\n"; continue; } for (datablock_iter->SeekToFirst(); datablock_iter->Valid(); datablock_iter->Next()) { s = datablock_iter->status(); if (!s.ok()) { out_stream << "Error reading the block - Skipped \n"; break; } DumpKeyValue(datablock_iter->key(), datablock_iter->value(), out_stream); } out_stream << "\n"; } uint64_t num_datablocks = block_id - 1; if (num_datablocks) { double datablock_size_avg = static_cast(datablock_size_sum) / num_datablocks; out_stream << "Data Block Summary:\n"; out_stream << "--------------------------------------\n"; out_stream << " # data blocks: " << num_datablocks << "\n"; out_stream << " min data block size: " << datablock_size_min << "\n"; out_stream << " max data block size: " << datablock_size_max << "\n"; out_stream << " avg data block size: " << std::to_string(datablock_size_avg) << "\n"; } return Status::OK(); } void BlockBasedTable::DumpKeyValue(const Slice& key, const Slice& value, std::ostream& out_stream) { InternalKey ikey; ikey.DecodeFrom(key); out_stream << " HEX " << ikey.user_key().ToString(true) << ": " << value.ToString(true) << "\n"; std::string str_key = ikey.user_key().ToString(); std::string str_value = value.ToString(); std::string res_key(""), res_value(""); char cspace = ' '; for (size_t i = 0; i < str_key.size(); i++) { if (str_key[i] == '\0') { res_key.append("\\0", 2); } else { res_key.append(&str_key[i], 1); } res_key.append(1, cspace); } for (size_t i = 0; i < str_value.size(); i++) { if (str_value[i] == '\0') { res_value.append("\\0", 2); } else { res_value.append(&str_value[i], 1); } res_value.append(1, cspace); } out_stream << " ASCII " << res_key << ": " << res_value << "\n"; out_stream << " ------\n"; } } // namespace ROCKSDB_NAMESPACE