/* Copyright(c) 2002-2017 Anatoliy Kuznetsov(anatoliy_kuznetsov at yahoo.com) Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. For more information please visit: http://bitmagic.io */ #ifndef RLEBTV__H__INCLUDED__ #define RLEBTV__H__INCLUDED__ #include /** GAP vector is designed to be very small. The size of buffer is fixed 128 short values. First word is a start flag. Used for debugging purposes. \internal */ class gap_vector { public: gap_vector(gap_word_t init = 0) { m_buf[0] = 1 << 3; // initial length = 1; if (init) { m_buf[0] ^= 1; } m_buf[1] = gap_max_bits - 1; } /// Checks if bit pos 1 or 0. Returns 0 if 0 and non zero otherwise. int is_bit_true(unsigned pos) const; int test(unsigned pos) const; /// Sets bit number pos to 1 /// returns true if operation sucessful, false if GAP threashold reached and /// we need to convert block to true bitblock bool set_bit(unsigned pos); /// Sets bit number pos to 0 bool clear_bit(unsigned pos); /// Counts number of bits ON unsigned bit_count() const; unsigned count_range(unsigned left, unsigned right, unsigned* d=0) const; void control() const; void convert_to_bitset(unsigned* dest) const; int combine_and(const gap_word_t* other); const gap_word_t* get_buf() const { return m_buf; } void invert() { *m_buf = bm::gap_word_t(1 - *m_buf); } void temp_invert() const; void combine_or(const gap_vector& vect); void combine_sub(const gap_vector& vect); void combine_xor(const gap_vector& vect); gap_word_t* get_buf() { return m_buf; } int compare(const gap_vector& vect); bool get_last(unsigned* last) const; private: gap_word_t m_buf[bm::gap_max_buff_len+3]; }; inline void gap_vector::combine_or(const gap_vector& vect) { gap_word_t tmp_buf[bm::gap_max_buff_len * 3] = {0,}; // temporary result unsigned len, dsize; gap_word_t* res = bm::gap_operation_or(m_buf, vect.get_buf(), tmp_buf, dsize); len = bm::gap_length(res); if (res == tmp_buf) { assert(len); ::memcpy(m_buf, tmp_buf, (len+1)*sizeof(gap_word_t)); } else { assert(res == m_buf); } } inline void gap_vector::combine_xor(const gap_vector& vect) { gap_word_t tmp_buf[gap_max_buff_len * 3] = {0,}; // temporary result unsigned len, dsize; gap_word_t* res = bm::gap_operation_xor(m_buf, vect.get_buf(), tmp_buf, dsize); len = bm::gap_length(res); if (res == tmp_buf) { assert(len); ::memcpy(m_buf, tmp_buf, (len+1)*sizeof(gap_word_t)); } else { assert(res == m_buf); } } inline void gap_vector::combine_sub(const gap_vector& vect) { unsigned dsize; gap_word_t tmp_buf[bm::gap_max_buff_len * 3] = {0,}; // temporary result gap_word_t* res = bm::gap_operation_sub(m_buf, vect.get_buf(), tmp_buf, dsize); unsigned len = bm::gap_length(res); if (res == tmp_buf) { assert(len); ::memcpy(m_buf, tmp_buf, (len+1) * sizeof(gap_word_t)); } else { assert(res == m_buf); } } inline void gap_vector::temp_invert() const { gap_word_t* buf = const_cast(m_buf); *buf ^= 1; } inline void gap_vector::control() const { unsigned sum = bm::gap_control_sum(m_buf); if(sum != bm::gap_max_bits-1) { assert(0); cout << "GAP Control failed." << endl; exit(1); } unsigned len = bm::gap_length(m_buf); gap_word_t prev = m_buf[1]; for (unsigned i = 2; i < len; ++i) { if (i != len-1) { if (m_buf[i] <= prev) { assert(0); cout << "GAP sequence control failed." << endl; exit(1); } } else { assert(m_buf[i] == bm::gap_max_bits-1); } prev = m_buf[i]; } } inline int gap_vector::is_bit_true(unsigned pos) const { auto r1 = bm::gap_test(m_buf, pos); auto r2 = bm::gap_test_unr(m_buf, pos); assert(r1 == r2); return int(r2); } inline bool gap_vector::get_last(unsigned* last) const { bool found = bm::gap_find_last(m_buf, last); return found; } inline int gap_vector::test(unsigned pos) const { return is_bit_true(pos); } unsigned gap_vector::bit_count() const { return bm::gap_bit_count(m_buf); } unsigned gap_vector::count_range(unsigned left, unsigned right, unsigned*) const { return bm::gap_bit_count_range(m_buf, (gap_word_t)left, (gap_word_t)right); } // returns destination size int gap_vector::combine_and(const gap_word_t* other) { gap_word_t tmp_buf[gap_max_buff_len * 3] = {0,}; // temporary result unsigned dsize; gap_word_t* res = bm::gap_operation_and(m_buf, other, tmp_buf, dsize); unsigned len = bm::gap_length(res); if (res == tmp_buf) { assert(len); ::memcpy(m_buf, tmp_buf, (len+1) * sizeof(gap_word_t)); } else { assert(res == m_buf); } return 0; } inline bool gap_vector::set_bit(unsigned pos) { unsigned is_set; bm::gap_set_value(1, m_buf, pos, &is_set); return is_set!=0; } inline bool gap_vector::clear_bit(unsigned pos) { unsigned is_set; bm::gap_set_value(0, m_buf, pos, &is_set); return is_set!=0; } inline void gap_vector::convert_to_bitset(unsigned* dest) const { bm::gap_convert_to_bitset(dest, m_buf); } inline int gap_vector::compare(const gap_vector& vect) { return bm::gapcmp(m_buf, vect.get_buf()); } #endif