// // This source code resides at www.jaeckel.org/LetsBeRational.7z . // // ====================================================================================== // Copyright © 2013-2014 Peter Jäckel. // // Permission to use, copy, modify, and distribute this software is freely granted, // provided that this notice is preserved. // // WARRANTY DISCLAIMER // The Software is provided "as is" without warranty of any kind, either express or implied, // including without limitation any implied warranties of condition, uninterrupted use, // merchantability, fitness for a particular purpose, or non-infringement. // ====================================================================================== // #include "rationalcubic.h" #if defined(_MSC_VER) # define NOMINMAX // to suppress MSVC's definitions of min() and max() // These four pragmas are the equivalent to /fp:fast. // YOU NEED THESE FOR THE SAKE OF *ACCURACY* WHEN |x| IS LARGE, say, |x|>50. // This is because they effectively enable the evaluation of certain // expressions in 80 bit registers without loss of intermediate accuracy. # pragma float_control( except, off ) # pragma float_control( precise, off ) # pragma fp_contract( on ) # pragma fenv_access( off ) #endif #include #include #include // Based on // // “Shape preserving piecewise rational interpolation”, R. Delbourgo, J.A. Gregory - SIAM journal on scientific and statistical computing, 1985 - SIAM. // http://dspace.brunel.ac.uk/bitstream/2438/2200/1/TR_10_83.pdf [caveat emptor: there are some typographical errors in that draft version] // namespace { const double minimum_rational_cubic_control_parameter_value = -(1 - sqrt(DBL_EPSILON)); const double maximum_rational_cubic_control_parameter_value = 2 / (DBL_EPSILON * DBL_EPSILON); inline bool is_zero(double x){ return fabs(x) < DBL_MIN; } } double rational_cubic_interpolation(double x, double x_l, double x_r, double y_l, double y_r, double d_l, double d_r, double r) { const double h = (x_r - x_l); if (fabs(h)<=0) return 0.5 * (y_l + y_r); // r should be greater than -1. We do not use assert(r > -1) here in order to allow values such as NaN to be propagated as they should. const double t = (x - x_l) / h; if ( ! (r >= maximum_rational_cubic_control_parameter_value) ) { const double t = (x - x_l) / h, omt = 1 - t, t2 = t * t, omt2 = omt * omt; // Formula (2.4) divided by formula (2.5) return (y_r * t2 * t + (r * y_r - h * d_r) * t2 * omt + (r * y_l + h * d_l) * t * omt2 + y_l * omt2 * omt) / (1 + (r - 3) * t * omt); } // Linear interpolation without over-or underflow. return y_r * t + y_l * (1 - t); } double rational_cubic_control_parameter_to_fit_second_derivative_at_left_side(double x_l, double x_r, double y_l, double y_r, double d_l, double d_r, double second_derivative_l) { const double h = (x_r-x_l), numerator = 0.5*h*second_derivative_l+(d_r-d_l); if (is_zero(numerator)) return 0; const double denominator = (y_r-y_l)/h-d_l; if (is_zero(denominator)) return numerator>0 ? maximum_rational_cubic_control_parameter_value : minimum_rational_cubic_control_parameter_value; return numerator/denominator; } double rational_cubic_control_parameter_to_fit_second_derivative_at_right_side(double x_l, double x_r, double y_l, double y_r, double d_l, double d_r, double second_derivative_r) { const double h = (x_r-x_l), numerator = 0.5*h*second_derivative_r+(d_r-d_l); if (is_zero(numerator)) return 0; const double denominator = d_r-(y_r-y_l)/h; if (is_zero(denominator)) return numerator>0 ? maximum_rational_cubic_control_parameter_value : minimum_rational_cubic_control_parameter_value; return numerator/denominator; } double minimum_rational_cubic_control_parameter(double d_l, double d_r, double s, bool preferShapePreservationOverSmoothness) { const bool monotonic = d_l * s >= 0 && d_r * s >= 0, convex = d_l <= s && s <= d_r, concave = d_l >= s && s >= d_r; if (!monotonic && !convex && !concave) // If 3==r_non_shape_preserving_target, this means revert to standard cubic. return minimum_rational_cubic_control_parameter_value; const double d_r_m_d_l = d_r - d_l, d_r_m_s = d_r - s, s_m_d_l = s - d_l; double r1 = -DBL_MAX, r2 = r1; // If monotonicity on this interval is possible, set r1 to satisfy the monotonicity condition (3.8). if (monotonic){ if (!is_zero(s)) // (3.8), avoiding division by zero. r1 = (d_r + d_l) / s; // (3.8) else if (preferShapePreservationOverSmoothness) // If division by zero would occur, and shape preservation is preferred, set value to enforce linear interpolation. r1 = maximum_rational_cubic_control_parameter_value; // This value enforces linear interpolation. } if (convex || concave) { if (!(is_zero(s_m_d_l) || is_zero(d_r_m_s))) // (3.18), avoiding division by zero. r2 = std::max(fabs(d_r_m_d_l / d_r_m_s), fabs(d_r_m_d_l / s_m_d_l)); else if (preferShapePreservationOverSmoothness) r2 = maximum_rational_cubic_control_parameter_value; // This value enforces linear interpolation. } else if (monotonic && preferShapePreservationOverSmoothness) r2 = maximum_rational_cubic_control_parameter_value; // This enforces linear interpolation along segments that are inconsistent with the slopes on the boundaries, e.g., a perfectly horizontal segment that has negative slopes on either edge. return std::max(minimum_rational_cubic_control_parameter_value, std::max(r1, r2)); } double convex_rational_cubic_control_parameter_to_fit_second_derivative_at_left_side(double x_l, double x_r, double y_l, double y_r, double d_l, double d_r, double second_derivative_l, bool preferShapePreservationOverSmoothness) { const double r = rational_cubic_control_parameter_to_fit_second_derivative_at_left_side(x_l, x_r, y_l, y_r, d_l, d_r, second_derivative_l); const double r_min = minimum_rational_cubic_control_parameter(d_l, d_r, (y_r-y_l)/(x_r-x_l), preferShapePreservationOverSmoothness); return std::max(r,r_min); } double convex_rational_cubic_control_parameter_to_fit_second_derivative_at_right_side(double x_l, double x_r, double y_l, double y_r, double d_l, double d_r, double second_derivative_r, bool preferShapePreservationOverSmoothness) { const double r = rational_cubic_control_parameter_to_fit_second_derivative_at_right_side(x_l, x_r, y_l, y_r, d_l, d_r, second_derivative_r); const double r_min = minimum_rational_cubic_control_parameter(d_l, d_r, (y_r-y_l)/(x_r-x_l), preferShapePreservationOverSmoothness); return std::max(r,r_min); }