/* * This file is part of the libopencm3 project. * * Copyright (C) 2011 Gareth McMullin * * This library is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this library. If not, see . */ #include #include #include #include #include #include "usb_private.h" #include "usb_dwc_common.h" /* The FS core and the HS core have the same register layout. * As the code can be used on both cores, the registers offset is modified * according to the selected cores base address. */ #define dev_base_address (usbd_dev->driver->base_address) #define REBASE(x) MMIO32((x) + (dev_base_address)) void dwc_set_address(usbd_device *usbd_dev, uint8_t addr) { REBASE(OTG_DCFG) = (REBASE(OTG_DCFG) & ~OTG_DCFG_DAD) | (addr << 4); } void dwc_ep_setup(usbd_device *usbd_dev, uint8_t addr, uint8_t type, uint16_t max_size, void (*callback) (usbd_device *usbd_dev, uint8_t ep)) { /* * Configure endpoint address and type. Allocate FIFO memory for * endpoint. Install callback function. */ uint8_t dir = addr & 0x80; addr &= 0x7f; if (addr == 0) { /* For the default control endpoint */ /* Configure IN part. */ if (max_size >= 64) { REBASE(OTG_DIEPCTL0) = OTG_DIEPCTL0_MPSIZ_64; } else if (max_size >= 32) { REBASE(OTG_DIEPCTL0) = OTG_DIEPCTL0_MPSIZ_32; } else if (max_size >= 16) { REBASE(OTG_DIEPCTL0) = OTG_DIEPCTL0_MPSIZ_16; } else { REBASE(OTG_DIEPCTL0) = OTG_DIEPCTL0_MPSIZ_8; } REBASE(OTG_DIEPTSIZ0) = (max_size & OTG_DIEPSIZ0_XFRSIZ_MASK); REBASE(OTG_DIEPCTL0) |= OTG_DIEPCTL0_EPENA | OTG_DIEPCTL0_SNAK; /* Configure OUT part. */ usbd_dev->doeptsiz[0] = OTG_DIEPSIZ0_STUPCNT_1 | OTG_DIEPSIZ0_PKTCNT | (max_size & OTG_DIEPSIZ0_XFRSIZ_MASK); REBASE(OTG_DOEPTSIZ(0)) = usbd_dev->doeptsiz[0]; REBASE(OTG_DOEPCTL(0)) |= OTG_DOEPCTL0_EPENA | OTG_DIEPCTL0_SNAK; REBASE(OTG_GNPTXFSIZ) = ((max_size / 4) << 16) | usbd_dev->driver->rx_fifo_size; usbd_dev->fifo_mem_top += max_size / 4; usbd_dev->fifo_mem_top_ep0 = usbd_dev->fifo_mem_top; return; } if (dir) { REBASE(OTG_DIEPTXF(addr)) = ((max_size / 4) << 16) | usbd_dev->fifo_mem_top; usbd_dev->fifo_mem_top += max_size / 4; REBASE(OTG_DIEPTSIZ(addr)) = (max_size & OTG_DIEPSIZ0_XFRSIZ_MASK); REBASE(OTG_DIEPCTL(addr)) |= OTG_DIEPCTL0_EPENA | OTG_DIEPCTL0_SNAK | (type << 18) | OTG_DIEPCTL0_USBAEP | OTG_DIEPCTLX_SD0PID | (addr << 22) | max_size; if (callback) { usbd_dev->user_callback_ctr[addr][USB_TRANSACTION_IN] = (void *)callback; } } if (!dir) { usbd_dev->doeptsiz[addr] = OTG_DIEPSIZ0_PKTCNT | (max_size & OTG_DIEPSIZ0_XFRSIZ_MASK); REBASE(OTG_DOEPTSIZ(addr)) = usbd_dev->doeptsiz[addr]; REBASE(OTG_DOEPCTL(addr)) |= OTG_DOEPCTL0_EPENA | OTG_DOEPCTL0_USBAEP | OTG_DIEPCTL0_CNAK | OTG_DOEPCTLX_SD0PID | (type << 18) | max_size; if (callback) { usbd_dev->user_callback_ctr[addr][USB_TRANSACTION_OUT] = (void *)callback; } } } void dwc_endpoints_reset(usbd_device *usbd_dev) { int i; /* The core resets the endpoints automatically on reset. */ usbd_dev->fifo_mem_top = usbd_dev->fifo_mem_top_ep0; /* Disable any currently active endpoints */ for (i = 1; i < 4; i++) { if (REBASE(OTG_DOEPCTL(i)) & OTG_DOEPCTL0_EPENA) { REBASE(OTG_DOEPCTL(i)) |= OTG_DOEPCTL0_EPDIS; } if (REBASE(OTG_DIEPCTL(i)) & OTG_DIEPCTL0_EPENA) { REBASE(OTG_DIEPCTL(i)) |= OTG_DIEPCTL0_EPDIS; } } /* Flush all tx/rx fifos */ REBASE(OTG_GRSTCTL) = OTG_GRSTCTL_TXFFLSH | OTG_GRSTCTL_TXFNUM_ALL | OTG_GRSTCTL_RXFFLSH; } void dwc_ep_stall_set(usbd_device *usbd_dev, uint8_t addr, uint8_t stall) { if (addr == 0) { if (stall) { REBASE(OTG_DIEPCTL(addr)) |= OTG_DIEPCTL0_STALL; } else { REBASE(OTG_DIEPCTL(addr)) &= ~OTG_DIEPCTL0_STALL; } } if (addr & 0x80) { addr &= 0x7F; if (stall) { REBASE(OTG_DIEPCTL(addr)) |= OTG_DIEPCTL0_STALL; } else { REBASE(OTG_DIEPCTL(addr)) &= ~OTG_DIEPCTL0_STALL; REBASE(OTG_DIEPCTL(addr)) |= OTG_DIEPCTLX_SD0PID; } } else { if (stall) { REBASE(OTG_DOEPCTL(addr)) |= OTG_DOEPCTL0_STALL; } else { REBASE(OTG_DOEPCTL(addr)) &= ~OTG_DOEPCTL0_STALL; REBASE(OTG_DOEPCTL(addr)) |= OTG_DOEPCTLX_SD0PID; } } } uint8_t dwc_ep_stall_get(usbd_device *usbd_dev, uint8_t addr) { /* Return non-zero if STALL set. */ if (addr & 0x80) { return (REBASE(OTG_DIEPCTL(addr & 0x7f)) & OTG_DIEPCTL0_STALL) ? 1 : 0; } else { return (REBASE(OTG_DOEPCTL(addr)) & OTG_DOEPCTL0_STALL) ? 1 : 0; } } void dwc_ep_nak_set(usbd_device *usbd_dev, uint8_t addr, uint8_t nak) { /* It does not make sense to force NAK on IN endpoints. */ if (addr & 0x80) { return; } usbd_dev->force_nak[addr] = nak; if (nak) { REBASE(OTG_DOEPCTL(addr)) |= OTG_DOEPCTL0_SNAK; } else { REBASE(OTG_DOEPCTL(addr)) |= OTG_DOEPCTL0_CNAK; } } uint16_t dwc_ep_write_packet(usbd_device *usbd_dev, uint8_t addr, const void *buf, uint16_t len) { const uint32_t *buf32 = buf; #if defined(__ARM_ARCH_6M__) const uint8_t *buf8 = buf; uint32_t word32; #endif /* defined(__ARM_ARCH_6M__) */ int i; addr &= 0x7F; /* Return if endpoint is already enabled. */ if (REBASE(OTG_DIEPTSIZ(addr)) & OTG_DIEPSIZ0_PKTCNT) { return 0; } /* Enable endpoint for transmission. */ REBASE(OTG_DIEPTSIZ(addr)) = OTG_DIEPSIZ0_PKTCNT | len; REBASE(OTG_DIEPCTL(addr)) |= OTG_DIEPCTL0_EPENA | OTG_DIEPCTL0_CNAK; /* Copy buffer to endpoint FIFO, note - memcpy does not work. * ARMv7M supports non-word-aligned accesses, ARMv6M does not. */ #if defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7EM__) for (i = len; i > 0; i -= 4) { REBASE(OTG_FIFO(addr)) = *buf32++; } #endif /* defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7EM__) */ #if defined(__ARM_ARCH_6M__) /* Take care of word-aligned and non-word-aligned buffers */ if (((uint32_t)buf8 & 0x3) == 0) { for (i = len; i > 0; i -= 4) { REBASE(OTG_FIFO(addr)) = *buf32++; } } else { for (i = len; i > 0; i -= 4) { memcpy(&word32, buf8, 4); REBASE(OTG_FIFO(addr)) = word32; buf8 += 4; } } #endif /* defined(__ARM_ARCH_6M__) */ return len; } uint16_t dwc_ep_read_packet(usbd_device *usbd_dev, uint8_t addr, void *buf, uint16_t len) { int i; uint32_t *buf32 = buf; #if defined(__ARM_ARCH_6M__) uint8_t *buf8 = buf; uint32_t word32; #endif /* defined(__ARM_ARCH_6M__) */ uint32_t extra; /* We do not need to know the endpoint address since there is only one * receive FIFO for all endpoints. */ (void) addr; len = MIN(len, usbd_dev->rxbcnt); /* ARMv7M supports non-word-aligned accesses, ARMv6M does not. */ #if defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7EM__) for (i = len; i >= 4; i -= 4) { *buf32++ = REBASE(OTG_FIFO(0)); usbd_dev->rxbcnt -= 4; } #endif /* defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7EM__) */ #if defined(__ARM_ARCH_6M__) /* Take care of word-aligned and non-word-aligned buffers */ if (((uint32_t)buf8 & 0x3) == 0) { for (i = len; i >= 4; i -= 4) { *buf32++ = REBASE(OTG_FIFO(0)); usbd_dev->rxbcnt -= 4; } } else { for (i = len; i >= 4; i -= 4) { word32 = REBASE(OTG_FIFO(0)); memcpy(buf8, &word32, 4); usbd_dev->rxbcnt -= 4; buf8 += 4; } /* buf32 needs to be updated as it is used for extra */ buf32 = (uint32_t *)buf8; } #endif /* defined(__ARM_ARCH_6M__) */ if (i) { extra = REBASE(OTG_FIFO(0)); /* we read 4 bytes from the fifo, so update rxbcnt */ if (usbd_dev->rxbcnt < 4) { /* Be careful not to underflow (rxbcnt is unsigned) */ usbd_dev->rxbcnt = 0; } else { usbd_dev->rxbcnt -= 4; } memcpy(buf32, &extra, i); } return len; } static void dwc_flush_txfifo(usbd_device *usbd_dev, int ep) { uint32_t fifo; /* set IN endpoint NAK */ REBASE(OTG_DIEPCTL(ep)) |= OTG_DIEPCTL0_SNAK; /* wait for core to respond */ while (!(REBASE(OTG_DIEPINT(ep)) & OTG_DIEPINTX_INEPNE)) { /* idle */ } /* get fifo for this endpoint */ fifo = (REBASE(OTG_DIEPCTL(ep)) & OTG_DIEPCTL0_TXFNUM_MASK) >> 22; /* wait for core to idle */ while (!(REBASE(OTG_GRSTCTL) & OTG_GRSTCTL_AHBIDL)) { /* idle */ } /* flush tx fifo */ REBASE(OTG_GRSTCTL) = (fifo << 6) | OTG_GRSTCTL_TXFFLSH; /* reset packet counter */ REBASE(OTG_DIEPTSIZ(ep)) = 0; while ((REBASE(OTG_GRSTCTL) & OTG_GRSTCTL_TXFFLSH)) { /* idle */ } } void dwc_poll(usbd_device *usbd_dev) { /* Read interrupt status register. */ uint32_t intsts = REBASE(OTG_GINTSTS); int i; if (intsts & OTG_GINTSTS_ENUMDNE) { /* Handle USB RESET condition. */ REBASE(OTG_GINTSTS) = OTG_GINTSTS_ENUMDNE; usbd_dev->fifo_mem_top = usbd_dev->driver->rx_fifo_size; _usbd_reset(usbd_dev); return; } /* * There is no global interrupt flag for transmit complete. * The XFRC bit must be checked in each OTG_DIEPINT(x). */ for (i = 0; i < 4; i++) { /* Iterate over endpoints. */ if (REBASE(OTG_DIEPINT(i)) & OTG_DIEPINTX_XFRC) { /* Transfer complete. */ if (usbd_dev->user_callback_ctr[i] [USB_TRANSACTION_IN]) { usbd_dev->user_callback_ctr[i] [USB_TRANSACTION_IN](usbd_dev, i); } REBASE(OTG_DIEPINT(i)) = OTG_DIEPINTX_XFRC; } } /* Note: RX and TX handled differently in this device. */ if (intsts & OTG_GINTSTS_RXFLVL) { /* Receive FIFO non-empty. */ uint32_t rxstsp = REBASE(OTG_GRXSTSP); uint32_t pktsts = rxstsp & OTG_GRXSTSP_PKTSTS_MASK; uint8_t ep = rxstsp & OTG_GRXSTSP_EPNUM_MASK; if (pktsts == OTG_GRXSTSP_PKTSTS_SETUP_COMP) { usbd_dev->user_callback_ctr[ep][USB_TRANSACTION_SETUP] (usbd_dev, ep); } if (pktsts == OTG_GRXSTSP_PKTSTS_OUT_COMP || pktsts == OTG_GRXSTSP_PKTSTS_SETUP_COMP) { REBASE(OTG_DOEPTSIZ(ep)) = usbd_dev->doeptsiz[ep]; REBASE(OTG_DOEPCTL(ep)) |= OTG_DOEPCTL0_EPENA | (usbd_dev->force_nak[ep] ? OTG_DOEPCTL0_SNAK : OTG_DOEPCTL0_CNAK); return; } if ((pktsts != OTG_GRXSTSP_PKTSTS_OUT) && (pktsts != OTG_GRXSTSP_PKTSTS_SETUP)) { return; } uint8_t type; if (pktsts == OTG_GRXSTSP_PKTSTS_SETUP) { type = USB_TRANSACTION_SETUP; } else { type = USB_TRANSACTION_OUT; } if (type == USB_TRANSACTION_SETUP && (REBASE(OTG_DIEPTSIZ(ep)) & OTG_DIEPSIZ0_PKTCNT)) { /* SETUP received but there is still something stuck * in the transmit fifo. Flush it. */ dwc_flush_txfifo(usbd_dev, ep); } /* Save packet size for dwc_ep_read_packet(). */ usbd_dev->rxbcnt = (rxstsp & OTG_GRXSTSP_BCNT_MASK) >> 4; if (type == USB_TRANSACTION_SETUP) { dwc_ep_read_packet(usbd_dev, ep, &usbd_dev->control_state.req, 8); } else if (usbd_dev->user_callback_ctr[ep][type]) { usbd_dev->user_callback_ctr[ep][type] (usbd_dev, ep); } /* Discard unread packet data. */ for (i = 0; i < usbd_dev->rxbcnt; i += 4) { /* There is only one receive FIFO, so use OTG_FIFO(0) */ (void)REBASE(OTG_FIFO(0)); } usbd_dev->rxbcnt = 0; } if (intsts & OTG_GINTSTS_USBSUSP) { if (usbd_dev->user_callback_suspend) { usbd_dev->user_callback_suspend(); } REBASE(OTG_GINTSTS) = OTG_GINTSTS_USBSUSP; } if (intsts & OTG_GINTSTS_WKUPINT) { if (usbd_dev->user_callback_resume) { usbd_dev->user_callback_resume(); } REBASE(OTG_GINTSTS) = OTG_GINTSTS_WKUPINT; } if (intsts & OTG_GINTSTS_SOF) { if (usbd_dev->user_callback_sof) { usbd_dev->user_callback_sof(); } REBASE(OTG_GINTSTS) = OTG_GINTSTS_SOF; } if (usbd_dev->user_callback_sof) { REBASE(OTG_GINTMSK) |= OTG_GINTMSK_SOFM; } else { REBASE(OTG_GINTMSK) &= ~OTG_GINTMSK_SOFM; } } void dwc_disconnect(usbd_device *usbd_dev, bool disconnected) { if (disconnected) { REBASE(OTG_DCTL) |= OTG_DCTL_SDIS; } else { REBASE(OTG_DCTL) &= ~OTG_DCTL_SDIS; } }