/* BLAKE2 reference source code package - optimized C implementations Copyright 2012, Samuel Neves . You may use this under the terms of the CC0, the OpenSSL Licence, or the Apache Public License 2.0, at your option. The terms of these licenses can be found at: - CC0 1.0 Universal : http://creativecommons.org/publicdomain/zero/1.0 - OpenSSL license : https://www.openssl.org/source/license.html - Apache 2.0 : http://www.apache.org/licenses/LICENSE-2.0 More information about the BLAKE2 hash function can be found at https://blake2.net. */ #include #include #include #include "blake2.h" #include "blake2-impl.h" #include "blake2-config.h" #ifdef _MSC_VER #include /* for _mm_set_epi64x */ #endif #include #if defined(HAVE_SSSE3) #include #endif #if defined(HAVE_SSE41) #include #endif #if defined(HAVE_AVX) #include #endif #if defined(HAVE_XOP) #include #endif #include "blake2b-round.h" static const uint64_t blake2b_IV[8] = { 0x6a09e667f3bcc908ULL, 0xbb67ae8584caa73bULL, 0x3c6ef372fe94f82bULL, 0xa54ff53a5f1d36f1ULL, 0x510e527fade682d1ULL, 0x9b05688c2b3e6c1fULL, 0x1f83d9abfb41bd6bULL, 0x5be0cd19137e2179ULL }; /* Some helper functions */ static void blake2b_set_lastnode( blake2b_state *S ) { S->f[1] = (uint64_t)-1; } static int blake2b_is_lastblock( const blake2b_state *S ) { return S->f[0] != 0; } static void blake2b_set_lastblock( blake2b_state *S ) { if( S->last_node ) blake2b_set_lastnode( S ); S->f[0] = (uint64_t)-1; } static void blake2b_increment_counter( blake2b_state *S, const uint64_t inc ) { S->t[0] += inc; S->t[1] += ( S->t[0] < inc ); } /* init xors IV with input parameter block */ int blake2b_init_param( blake2b_state *S, const blake2b_param *P ) { size_t i; /*blake2b_init0( S ); */ const unsigned char * v = ( const unsigned char * )( blake2b_IV ); const unsigned char * p = ( const unsigned char * )( P ); unsigned char * h = ( unsigned char * )( S->h ); /* IV XOR ParamBlock */ memset( S, 0, sizeof( blake2b_state ) ); for( i = 0; i < BLAKE2B_OUTBYTES; ++i ) h[i] = v[i] ^ p[i]; S->outlen = P->digest_length; return 0; } /* Some sort of default parameter block initialization, for sequential blake2b */ int blake2b_init( blake2b_state *S, size_t outlen ) { blake2b_param P[1]; if ( ( !outlen ) || ( outlen > BLAKE2B_OUTBYTES ) ) return -1; P->digest_length = (uint8_t)outlen; P->key_length = 0; P->fanout = 1; P->depth = 1; store32( &P->leaf_length, 0 ); store32( &P->node_offset, 0 ); store32( &P->xof_length, 0 ); P->node_depth = 0; P->inner_length = 0; memset( P->reserved, 0, sizeof( P->reserved ) ); memset( P->salt, 0, sizeof( P->salt ) ); memset( P->personal, 0, sizeof( P->personal ) ); return blake2b_init_param( S, P ); } int blake2b_init_key_with_param( blake2b_state *S, const blake2b_param *P, const void *key, size_t keylen ) { if( blake2b_init_param( S, P ) < 0 ) return 0; { uint8_t block[BLAKE2B_BLOCKBYTES]; memset( block, 0, BLAKE2B_BLOCKBYTES ); memcpy( block, key, keylen ); blake2b_update( S, block, BLAKE2B_BLOCKBYTES ); secure_zero_memory( block, BLAKE2B_BLOCKBYTES ); /* Burn the key from stack */ } return 0; } int blake2b_init_key( blake2b_state *S, size_t outlen, const void *key, size_t keylen ) { blake2b_param P[1]; if ( ( !outlen ) || ( outlen > BLAKE2B_OUTBYTES ) ) return -1; if ( ( !keylen ) || keylen > BLAKE2B_KEYBYTES ) return -1; P->digest_length = (uint8_t)outlen; P->key_length = (uint8_t)keylen; P->fanout = 1; P->depth = 1; store32( &P->leaf_length, 0 ); store32( &P->node_offset, 0 ); store32( &P->xof_length, 0 ); P->node_depth = 0; P->inner_length = 0; memset( P->reserved, 0, sizeof( P->reserved ) ); memset( P->salt, 0, sizeof( P->salt ) ); memset( P->personal, 0, sizeof( P->personal ) ); if( blake2b_init_param( S, P ) < 0 ) return 0; { uint8_t block[BLAKE2B_BLOCKBYTES]; memset( block, 0, BLAKE2B_BLOCKBYTES ); memcpy( block, key, keylen ); blake2b_update( S, block, BLAKE2B_BLOCKBYTES ); secure_zero_memory( block, BLAKE2B_BLOCKBYTES ); /* Burn the key from stack */ } return 0; } static void blake2b_compress( blake2b_state *S, const uint8_t block[BLAKE2B_BLOCKBYTES] ) { __m128i row1l, row1h; __m128i row2l, row2h; __m128i row3l, row3h; __m128i row4l, row4h; __m128i b0, b1; __m128i t0, t1; #if defined(HAVE_SSSE3) && !defined(HAVE_XOP) const __m128i r16 = _mm_setr_epi8( 2, 3, 4, 5, 6, 7, 0, 1, 10, 11, 12, 13, 14, 15, 8, 9 ); const __m128i r24 = _mm_setr_epi8( 3, 4, 5, 6, 7, 0, 1, 2, 11, 12, 13, 14, 15, 8, 9, 10 ); #endif #if defined(HAVE_SSE41) const __m128i m0 = LOADU( block + 00 ); const __m128i m1 = LOADU( block + 16 ); const __m128i m2 = LOADU( block + 32 ); const __m128i m3 = LOADU( block + 48 ); const __m128i m4 = LOADU( block + 64 ); const __m128i m5 = LOADU( block + 80 ); const __m128i m6 = LOADU( block + 96 ); const __m128i m7 = LOADU( block + 112 ); #else const uint64_t m0 = load64(block + 0 * sizeof(uint64_t)); const uint64_t m1 = load64(block + 1 * sizeof(uint64_t)); const uint64_t m2 = load64(block + 2 * sizeof(uint64_t)); const uint64_t m3 = load64(block + 3 * sizeof(uint64_t)); const uint64_t m4 = load64(block + 4 * sizeof(uint64_t)); const uint64_t m5 = load64(block + 5 * sizeof(uint64_t)); const uint64_t m6 = load64(block + 6 * sizeof(uint64_t)); const uint64_t m7 = load64(block + 7 * sizeof(uint64_t)); const uint64_t m8 = load64(block + 8 * sizeof(uint64_t)); const uint64_t m9 = load64(block + 9 * sizeof(uint64_t)); const uint64_t m10 = load64(block + 10 * sizeof(uint64_t)); const uint64_t m11 = load64(block + 11 * sizeof(uint64_t)); const uint64_t m12 = load64(block + 12 * sizeof(uint64_t)); const uint64_t m13 = load64(block + 13 * sizeof(uint64_t)); const uint64_t m14 = load64(block + 14 * sizeof(uint64_t)); const uint64_t m15 = load64(block + 15 * sizeof(uint64_t)); #endif row1l = LOADU( &S->h[0] ); row1h = LOADU( &S->h[2] ); row2l = LOADU( &S->h[4] ); row2h = LOADU( &S->h[6] ); row3l = LOADU( &blake2b_IV[0] ); row3h = LOADU( &blake2b_IV[2] ); row4l = _mm_xor_si128( LOADU( &blake2b_IV[4] ), LOADU( &S->t[0] ) ); row4h = _mm_xor_si128( LOADU( &blake2b_IV[6] ), LOADU( &S->f[0] ) ); ROUND( 0 ); ROUND( 1 ); ROUND( 2 ); ROUND( 3 ); ROUND( 4 ); ROUND( 5 ); ROUND( 6 ); ROUND( 7 ); ROUND( 8 ); ROUND( 9 ); ROUND( 10 ); ROUND( 11 ); row1l = _mm_xor_si128( row3l, row1l ); row1h = _mm_xor_si128( row3h, row1h ); STOREU( &S->h[0], _mm_xor_si128( LOADU( &S->h[0] ), row1l ) ); STOREU( &S->h[2], _mm_xor_si128( LOADU( &S->h[2] ), row1h ) ); row2l = _mm_xor_si128( row4l, row2l ); row2h = _mm_xor_si128( row4h, row2h ); STOREU( &S->h[4], _mm_xor_si128( LOADU( &S->h[4] ), row2l ) ); STOREU( &S->h[6], _mm_xor_si128( LOADU( &S->h[6] ), row2h ) ); } int blake2b_update( blake2b_state *S, const void *pin, size_t inlen ) { const unsigned char * in = (const unsigned char *)pin; if( inlen > 0 ) { size_t left = S->buflen; size_t fill = BLAKE2B_BLOCKBYTES - left; if( inlen > fill ) { S->buflen = 0; memcpy( S->buf + left, in, fill ); /* Fill buffer */ blake2b_increment_counter( S, BLAKE2B_BLOCKBYTES ); blake2b_compress( S, S->buf ); /* Compress */ in += fill; inlen -= fill; while(inlen > BLAKE2B_BLOCKBYTES) { blake2b_increment_counter(S, BLAKE2B_BLOCKBYTES); blake2b_compress( S, in ); in += BLAKE2B_BLOCKBYTES; inlen -= BLAKE2B_BLOCKBYTES; } } memcpy( S->buf + S->buflen, in, inlen ); S->buflen += inlen; } return 0; } int blake2b_final( blake2b_state *S, void *out, size_t outlen ) { if( out == NULL || outlen < S->outlen ) return -1; if( blake2b_is_lastblock( S ) ) return -1; blake2b_increment_counter( S, S->buflen ); blake2b_set_lastblock( S ); memset( S->buf + S->buflen, 0, BLAKE2B_BLOCKBYTES - S->buflen ); /* Padding */ blake2b_compress( S, S->buf ); memcpy( out, &S->h[0], S->outlen ); return 0; } int blake2b( void *out, size_t outlen, const void *in, size_t inlen, const void *key, size_t keylen ) { blake2b_state S[1]; /* Verify parameters */ if ( NULL == in && inlen > 0 ) return -1; if ( NULL == out ) return -1; if( NULL == key && keylen > 0 ) return -1; if( !outlen || outlen > BLAKE2B_OUTBYTES ) return -1; if( keylen > BLAKE2B_KEYBYTES ) return -1; if( keylen ) { if( blake2b_init_key( S, outlen, key, keylen ) < 0 ) return -1; } else { if( blake2b_init( S, outlen ) < 0 ) return -1; } blake2b_update( S, ( const uint8_t * )in, inlen ); blake2b_final( S, out, outlen ); return 0; } int blake2( void *out, size_t outlen, const void *in, size_t inlen, const void *key, size_t keylen ) { return blake2b(out, outlen, in, inlen, key, keylen); } #if defined(SUPERCOP) int crypto_hash( unsigned char *out, unsigned char *in, unsigned long long inlen ) { return blake2b( out, BLAKE2B_OUTBYTES, in, inlen, NULL, 0 ); } #endif #if defined(BLAKE2B_SELFTEST) #include #include "blake2-kat.h" int main( void ) { uint8_t key[BLAKE2B_KEYBYTES]; uint8_t buf[BLAKE2_KAT_LENGTH]; size_t i, step; for( i = 0; i < BLAKE2B_KEYBYTES; ++i ) key[i] = ( uint8_t )i; for( i = 0; i < BLAKE2_KAT_LENGTH; ++i ) buf[i] = ( uint8_t )i; /* Test simple API */ for( i = 0; i < BLAKE2_KAT_LENGTH; ++i ) { uint8_t hash[BLAKE2B_OUTBYTES]; blake2b( hash, BLAKE2B_OUTBYTES, buf, i, key, BLAKE2B_KEYBYTES ); if( 0 != memcmp( hash, blake2b_keyed_kat[i], BLAKE2B_OUTBYTES ) ) { goto fail; } } /* Test streaming API */ for(step = 1; step < BLAKE2B_BLOCKBYTES; ++step) { for (i = 0; i < BLAKE2_KAT_LENGTH; ++i) { uint8_t hash[BLAKE2B_OUTBYTES]; blake2b_state S; uint8_t * p = buf; size_t mlen = i; int err = 0; if( (err = blake2b_init_key(&S, BLAKE2B_OUTBYTES, key, BLAKE2B_KEYBYTES)) < 0 ) { goto fail; } while (mlen >= step) { if ( (err = blake2b_update(&S, p, step)) < 0 ) { goto fail; } mlen -= step; p += step; } if ( (err = blake2b_update(&S, p, mlen)) < 0) { goto fail; } if ( (err = blake2b_final(&S, hash, BLAKE2B_OUTBYTES)) < 0) { goto fail; } if (0 != memcmp(hash, blake2b_keyed_kat[i], BLAKE2B_OUTBYTES)) { goto fail; } } } puts( "ok" ); return 0; fail: puts("error"); return -1; } #endif