# bleuscore [![codecov](https://codecov.io/gh/shenxiangzhuang/bleuscore/graph/badge.svg?token=ckgU5oGbxf)](https://codecov.io/gh/shenxiangzhuang/bleuscore) [![MIT licensed](https://img.shields.io/badge/license-MIT-blue.svg)](./LICENSE) [![Crates.io](https://img.shields.io/crates/v/bleuscore)](https://crates.io/crates/bleuscore) [![PyPI - Version](https://img.shields.io/pypi/v/bleuscore)](https://pypi.org/project/bleuscore/) ![docs.rs](https://img.shields.io/docsrs/bleuscore) [`bleuscore`](https://github.com/shenxiangzhuang/bleuscore) is a fast BLEU score calculator written in rust. ## Installation The python package has been published to [pypi](https://pypi.org/project/bleuscore/), so we can install it directly with many ways: - `pip` ```bash pip install bleuscore ``` - `poetry` ```bash poetry add bleuscore ``` - `uv` ```bash uv pip install bleuscore ``` ## Quick Start The usage is exactly same with [huggingface evaluate](https://huggingface.co/spaces/evaluate-metric/bleu): ```diff - import evaluate + import bleuscore predictions = ["hello there general kenobi", "foo bar foobar"] references = [ ["hello there general kenobi", "hello there !"], ["foo bar foobar"] ] - bleu = evaluate.load("bleu") - results = bleu.compute(predictions=predictions, references=references) + results = bleuscore.compute(predictions=predictions, references=references) print(results) # {'bleu': 1.0, 'precisions': [1.0, 1.0, 1.0, 1.0], 'brevity_penalty': 1.0, # 'length_ratio': 1.1666666666666667, 'translation_length': 7, 'reference_length': 6} ``` ## Benchmark **TLDR: We got more than 10x speedup when the corpus size beyond 100K**
We use the demo data shown in quick start to do this simple benchmark. You can check the [benchmark/simple](./benchmark/simple) for the benchmark source code. - `rs_bleuscore`: bleuscore python library - `local_hf_bleu`: huggingface evaluate bleu algorithm in **local** - `sacre_bleu`: sacrebleu - Note that we got different result with sacrebleu in the simple demo data and all the rests have same result - `hf_evaluate`: huggingface evaluate bleu algorithm with **evaluate** package The `N` is used to enlarge the predictions/references size by simply duplication the demo data as shown before. We can see that as `N` increase, the bleuscore gets better performance. You can navigate [benchmark](./benchmark/README.md) for more benchmark details. ### N=100 ```bash hyhyperfine --warmup 5 --runs 10 \ "python simple/rs_bleuscore.py 100" \ "python simple/local_hf_bleu.py 100" \ "python simple/sacre_bleu.py 100" \ "python simple/hf_evaluate.py 100" Benchmark 1: python simple/rs_bleuscore.py 100 Time (mean ± σ): 19.0 ms ± 2.6 ms [User: 17.8 ms, System: 5.3 ms] Range (min … max): 14.8 ms … 23.2 ms 10 runs Benchmark 2: python simple/local_hf_bleu.py 100 Time (mean ± σ): 21.5 ms ± 2.2 ms [User: 19.0 ms, System: 2.5 ms] Range (min … max): 16.8 ms … 24.1 ms 10 runs Benchmark 3: python simple/sacre_bleu.py 100 Time (mean ± σ): 45.9 ms ± 2.2 ms [User: 38.7 ms, System: 7.1 ms] Range (min … max): 43.5 ms … 50.9 ms 10 runs Benchmark 4: python simple/hf_evaluate.py 100 Time (mean ± σ): 4.504 s ± 0.429 s [User: 0.762 s, System: 0.823 s] Range (min … max): 4.163 s … 5.446 s 10 runs Summary python simple/rs_bleuscore.py 100 ran 1.13 ± 0.20 times faster than python simple/local_hf_bleu.py 100 2.42 ± 0.35 times faster than python simple/sacre_bleu.py 100 237.68 ± 39.88 times faster than python simple/hf_evaluate.py 100 ``` ### N = 1K ~ 1M | Command | Mean [ms] | Min [ms] | Max [ms] | Relative | |:-----------------------------------------|----------------:|---------:|---------:|----------------:| | `python simple/rs_bleuscore.py 1000` | 20.3 ± 1.3 | 18.2 | 21.4 | 1.00 | | `python simple/local_hf_bleu.py 1000` | 45.8 ± 1.2 | 44.2 | 47.5 | 2.26 ± 0.16 | | `python simple/rs_bleuscore.py 10000` | 37.8 ± 1.5 | 35.9 | 39.5 | 1.87 ± 0.14 | | `python simple/local_hf_bleu.py 10000` | 295.0 ± 5.9 | 288.6 | 304.2 | 14.55 ± 0.98 | | `python simple/rs_bleuscore.py 100000` | 219.6 ± 3.3 | 215.3 | 224.0 | 10.83 ± 0.72 | | `python simple/local_hf_bleu.py 100000` | 2781.4 ± 42.2 | 2723.1 | 2833.0 | 137.13 ± 9.10 | | `python simple/rs_bleuscore.py 1000000` | 2048.8 ± 31.4 | 2013.2 | 2090.3 | 101.01 ± 6.71 | | `python simple/local_hf_bleu.py 1000000` | 28285.3 ± 100.9 | 28182.1 | 28396.1 | 1394.51 ± 90.21 |