/* BLIS An object-based framework for developing high-performance BLAS-like libraries. Copyright (C) 2014, The University of Texas at Austin Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. - Neither the name(s) of the copyright holder(s) nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "blis.h" #ifdef BLIS_ENABLE_GEMM_MD #undef GENTFUNCCO #define GENTFUNCCO( ctype, ctype_r, ch, chr, opname, suf ) \ \ void PASTEMAC2(ch,opname,suf) \ ( \ dim_t m, \ dim_t n, \ dim_t k, \ const void* alpha, \ const void* a, \ const void* b, \ const void* beta, \ void* c, inc_t rs_c, inc_t cs_c, \ auxinfo_t* data, \ const cntx_t* cntx \ ) \ { \ const num_t dt = PASTEMAC(ch,type); \ const num_t dt_r = PASTEMAC(chr,type); \ \ gemm_ukr_ft rgemm_ukr = bli_cntx_get_ukr_dt( dt_r, BLIS_GEMM_UKR, cntx ); \ const bool col_pref = bli_cntx_ukr_prefers_cols_dt( dt_r, BLIS_GEMM_UKR, cntx ); \ const bool row_pref = !col_pref; \ \ const dim_t mr = bli_cntx_get_blksz_def_dt( dt, BLIS_MR, cntx ); \ const dim_t nr = bli_cntx_get_blksz_def_dt( dt, BLIS_NR, cntx ); \ \ dim_t mr_r = mr; \ dim_t nr_r = nr; \ \ ctype ct[ BLIS_STACK_BUF_MAX_SIZE \ / sizeof( ctype_r ) ] \ __attribute__((aligned(BLIS_STACK_BUF_ALIGN_SIZE))); \ inc_t rs_ct; \ inc_t cs_ct; \ \ const ctype_r* a_r = ( ctype_r* )a; \ \ const ctype_r* b_r = ( ctype_r* )b; \ \ const ctype_r* zero_r = PASTEMAC(chr,0); \ \ const ctype_r* alpha_r = &PASTEMAC(ch,real)( *(( ctype* )alpha) ); \ /* ctype_r* alpha_i = &PASTEMAC(ch,imag)( *(( ctype* )alpha) ); */ \ \ const ctype_r* beta_r = &PASTEMAC(ch,real)( *(( ctype* )beta) ); \ const ctype_r* beta_i = &PASTEMAC(ch,imag)( *(( ctype* )beta) ); \ \ bool using_ct; \ \ /* This virtual microkernel is used by ccr and crc mixed-domain cases when any of the following conditions are met: - beta is complex (ie: has a non-zero imaginary component) - C is general-stored - the computation precision differs from the storage of C If, however, none of the above conditions are met, then the real domain macrokernel can be (and will be) called instead of calling the complex macrokernel (and this virtual microkernel). */ \ \ /* PASTEMAC(chr,fprintm)( stdout, "gemm_ukr: a", mr, k, \ a_r, 1, mr, "%5.2f", "" ); \ PASTEMAC(chr,fprintm)( stdout, "gemm_ukr: b", k, nr, \ b_r, nr, 1, "%5.2f", "" ); \ PASTEMAC(chr,fprintm)( stdout, "gemm_ukr: c before", mr, nr, \ c_use, rs_c_use, cs_c_use, "%5.2f", "" ); \ */ \ \ /* SAFETY CHECK: The higher level implementation should never allow an alpha with non-zero imaginary component to be passed in, because it can't be applied properly using the 1m method. If alpha is not real, then something is very wrong. */ \ /* if ( !PASTEMAC(chr,eq0)( *alpha_i ) ) \ bli_check_error_code( BLIS_NOT_YET_IMPLEMENTED ); \ */ \ \ /* If beta has a non-zero imaginary component OR if c is stored with general stride, then we compute the alpha*a*b product into temporary storage and then accumulate that result into c afterwards. Note that the other two cases concerning disagreement between the storage of C and the output preference of the micro-kernel, should ONLY occur in the context of trsm, whereby this virtual micro-kernel is called directly from the trsm macro-kernel to update the micro-tile b11 that exists within the packed row-panel of B. Indeed that is the reason those cases MUST be explicitly handled. */ \ if ( !PASTEMAC(chr,eq0)( *beta_i ) ) using_ct = TRUE; \ else if ( bli_is_col_stored( rs_c, cs_c ) && row_pref ) using_ct = TRUE; \ else if ( bli_is_row_stored( rs_c, cs_c ) && col_pref ) using_ct = TRUE; \ else if ( bli_is_gen_stored( rs_c, cs_c ) ) using_ct = TRUE; \ else using_ct = FALSE; \ \ \ if ( using_ct ) \ { \ /* In the atypical cases, we compute the result into temporary workspace ct and then accumulate it back to c at the end. */ \ \ /* Set the strides of ct based on the preference of the underlying native real domain gemm micro-kernel. Note that we set the ct strides in units of complex elements. */ \ if ( col_pref ) { rs_ct = 1; cs_ct = mr; } \ else { rs_ct = nr; cs_ct = 1; } \ \ ctype_r* c_use = ( ctype_r* )ct; \ inc_t rs_c_use = rs_ct; \ inc_t cs_c_use = cs_ct; \ \ /* Convert the strides and corresponding microtile dimension from being in units of complex elements to be in units of real elements. */ \ if ( bli_is_col_stored( rs_c_use, cs_c_use ) ) { cs_c_use *= 2; mr_r *= 2; } \ else { rs_c_use *= 2; nr_r *= 2; }\ \ /* c = beta * c + alpha_r * a * b; */ \ rgemm_ukr \ ( \ mr_r, \ nr_r, \ k, \ alpha_r, \ a_r, \ b_r, \ zero_r, \ c_use, rs_c_use, cs_c_use, \ data, \ cntx \ ); \ \ /* Accumulate the final result in ct back to c. */ \ if ( PASTEMAC(ch,eq1)( *(( ctype* )beta) ) ) \ { \ for ( dim_t j = 0; j < n; ++j ) \ for ( dim_t i = 0; i < m; ++i ) \ { \ PASTEMAC(ch,adds) \ ( \ *( ct + i*rs_ct + j*cs_ct), \ *(( ctype* )c + i*rs_c + j*cs_c ) \ ); \ } \ } \ else if ( PASTEMAC(ch,eq0)( *(( ctype* )beta )) ) \ { \ for ( dim_t j = 0; j < n; ++j ) \ for ( dim_t i = 0; i < m; ++i ) \ { \ PASTEMAC(ch,copys) \ ( \ *( ct + i*rs_ct + j*cs_ct), \ *(( ctype* )c + i*rs_c + j*cs_c ) \ ); \ } \ } \ else \ { \ for ( dim_t j = 0; j < n; ++j ) \ for ( dim_t i = 0; i < m; ++i ) \ { \ PASTEMAC(ch,xpbys) \ ( \ *( ct + i*rs_ct + j*cs_ct), \ *(( ctype* )beta ), \ *(( ctype* )c + i*rs_c + j*cs_c ) \ ); \ } \ } \ } \ else \ { \ /* In the typical cases, we use the real part of beta and accumulate directly into the output matrix c. */ \ \ ctype_r* c_use = ( ctype_r* )c; \ inc_t rs_c_use = rs_c; \ inc_t cs_c_use = cs_c; \ \ dim_t m_use = m; \ dim_t n_use = n; \ \ /* Convert the strides and corresponding microtile dimension from being in units of complex elements to be in units of real elements. */ \ if ( bli_is_col_stored( rs_c_use, cs_c_use ) ) { cs_c_use *= 2; m_use *= 2; } \ else { rs_c_use *= 2; n_use *= 2; } \ \ /* c = beta * c + alpha_r * a * b; */ \ rgemm_ukr \ ( \ m_use, \ n_use, \ k, \ alpha_r, \ a_r, \ b_r, \ beta_r, \ c_use, rs_c_use, cs_c_use, \ data, \ cntx \ ); \ } \ } INSERT_GENTFUNCCO( gemm_md_c2r, BLIS_REF_SUFFIX ) #endif