/* BLIS An object-based framework for developing high-performance BLAS-like libraries. Copyright (C) 2014, The University of Texas at Austin Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. - Neither the name(s) of the copyright holder(s) nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "blis.h" #define FUNCPTR_T gemm_fp typedef void (*FUNCPTR_T)( dim_t m, dim_t n, dim_t k, void* alpha, void* a, inc_t cs_a, dim_t pd_a, inc_t ps_a, void* b, inc_t rs_b, dim_t pd_b, inc_t ps_b, void* beta, void* c, inc_t rs_c, inc_t cs_c, void_fp gemm_ukr ); static FUNCPTR_T GENARRAY(ftypes,gemm_ker_var5); void bli_gemm_ker_var5( obj_t* a, obj_t* b, obj_t* c, cntx_t* cntx, gemm_t* cntl, gemm_thrinfo_t* thread ) { num_t dt_exec = bli_obj_exec_dt( c ); dim_t m = bli_obj_length( c ); dim_t n = bli_obj_width( c ); dim_t k = bli_obj_width( a ); void* buf_a = bli_obj_buffer_at_off( a ); inc_t cs_a = bli_obj_col_stride( a ); dim_t pd_a = bli_obj_panel_dim( a ); inc_t ps_a = bli_obj_panel_stride( a ); void* buf_b = bli_obj_buffer_at_off( b ); inc_t rs_b = bli_obj_row_stride( b ); dim_t pd_b = bli_obj_panel_dim( b ); inc_t ps_b = bli_obj_panel_stride( b ); void* buf_c = bli_obj_buffer_at_off( c ); inc_t rs_c = bli_obj_row_stride( c ); inc_t cs_c = bli_obj_col_stride( c ); obj_t scalar_a; obj_t scalar_b; void* buf_alpha; void* buf_beta; FUNCPTR_T f; func_t* gemm_ukrs; void_fp gemm_ukr; // Detach and multiply the scalars attached to A and B. bli_obj_scalar_detach( a, &scalar_a ); bli_obj_scalar_detach( b, &scalar_b ); bli_mulsc( &scalar_a, &scalar_b ); // Grab the addresses of the internal scalar buffers for the scalar // merged above and the scalar attached to C. buf_alpha = bli_obj_internal_scalar_buffer( &scalar_b ); buf_beta = bli_obj_internal_scalar_buffer( c ); // Index into the type combination array to extract the correct // function pointer. f = ftypes[dt_exec]; // Extract from the context the func_t object containing // the gemm micro-kernel function addresses, and then query the // function address corresponding to the current datatype. gemm_ukrs = bli_cntx_get_l3_ukr( BLIS_GEMM_UKR, cntx ); gemm_ukr = bli_func_get_dt( dt_exec, gemm_ukrs ); // Invoke the function. f( m, n, k, buf_alpha, buf_a, cs_a, pd_a, ps_a, buf_b, rs_b, pd_b, ps_b, buf_beta, buf_c, rs_c, cs_c, gemm_ukr ); } #undef GENTFUNC #define GENTFUNC( ctype, ch, varname, ukrtype ) \ \ void PASTEMAC(ch,varname)( \ dim_t m, \ dim_t n, \ dim_t k, \ void* alpha, \ void* a, inc_t cs_a, dim_t pd_a, inc_t ps_a, \ void* b, inc_t rs_b, dim_t pd_b, inc_t ps_b, \ void* beta, \ void* c, inc_t rs_c, inc_t cs_c, \ void_fp gemm_ukr \ ) \ { \ /* Cast the micro-kernel address to its function pointer type. */ \ PASTECH(ch,ukrtype) gemm_ukr_cast = gemm_ukr; \ \ /* Temporary buffer for incremental packing of B. */ \ ctype bp[ PASTEMAC(ch,maxkc) * \ /* !!!! NOTE: This packnr actually needs to be something like maxpacknr if it is to be guaranteed to work in all situations !!!! The right place to define maxpackmr/nr would be in bli_kernel_post_macro_defs.h */ \ PASTEMAC(ch,packnr) ] \ __attribute__((aligned(BLIS_STACK_BUF_ALIGN_SIZE))); \ \ /* Temporary C buffer for edge cases. */ \ ctype ct[ PASTEMAC(ch,maxmr) * \ PASTEMAC(ch,maxnr) ] \ __attribute__((aligned(BLIS_STACK_BUF_ALIGN_SIZE))); \ const inc_t rs_ct = 1; \ const inc_t cs_ct = PASTEMAC(ch,maxmr); \ \ /* Alias some constants to simpler names. */ \ const dim_t MR = pd_a; \ const dim_t NR = pd_b; \ const dim_t PACKNR = rs_b; \ \ ctype* restrict one = PASTEMAC(ch,1); \ ctype* restrict zero = PASTEMAC(ch,0); \ ctype* restrict a_cast = a; \ ctype* restrict b_cast = b; \ ctype* restrict c_cast = c; \ ctype* restrict alpha_cast = alpha; \ ctype* restrict beta_cast = beta; \ ctype* restrict b1; \ ctype* restrict c1; \ ctype* restrict b2; \ \ dim_t m_iter, m_left; \ dim_t n_iter, n_left; \ dim_t i, j; \ dim_t m_cur; \ dim_t n_cur; \ inc_t rstep_a; \ inc_t cstep_b; \ inc_t rstep_c, cstep_c; \ auxinfo_t aux; \ \ /* Assumptions/assertions: rs_a == 1 cs_a == PACKMR pd_a == MR ps_a == stride to next micro-panel of A rs_b == PACKNR cs_b == 1 pd_b == NR ps_b == stride to next micro-panel of B rs_c == (no assumptions) cs_c == (no assumptions) */ \ \ /* If any dimension is zero, return immediately. */ \ if ( bli_zero_dim3( m, n, k ) ) return; \ \ /* Clear the temporary C buffer in case it has any infs or NaNs. */ \ PASTEMAC(ch,set0s_mxn)( MR, NR, \ ct, rs_ct, cs_ct ); \ \ /* Compute number of primary and leftover components of the m and n dimensions. */ \ n_iter = n / NR; \ n_left = n % NR; \ \ m_iter = m / MR; \ m_left = m % MR; \ \ if ( n_left ) ++n_iter; \ if ( m_left ) ++m_iter; \ \ /* Determine some increments used to step through A, B, and C. */ \ rstep_a = ps_a; \ \ cstep_b = ps_b; \ \ rstep_c = rs_c * MR; \ cstep_c = cs_c * NR; \ \ /* Save the panel strides of A and B to the auxinfo_t object. */ \ bli_auxinfo_set_ps_a( ps_a, &aux ); \ bli_auxinfo_set_ps_b( ps_b, &aux ); \ \ b1 = b_cast; \ c1 = c_cast; \ \ /* Since we pack micro-panels of B incrementaly, one at a time, the address of the next micro-panel of B remains constant. */ \ b2 = bp; \ \ /* Save address of next panel of B to the auxinfo_t object. */ \ bli_auxinfo_set_next_b( b2, &aux ); \ \ /* Loop over the n dimension (NR columns at a time). */ \ for ( j = 0; j < n_iter; ++j ) \ { \ ctype* restrict a1; \ ctype* restrict c11; \ \ a1 = a_cast; \ c11 = c1; \ \ n_cur = ( bli_is_not_edge_f( j, n_iter, n_left ) ? NR : n_left ); \ \ /* Incrementally pack a single micro-panel of B. */ \ PASTEMAC(ch,packm_cxk)( BLIS_NO_CONJUGATE, \ n_cur, \ k, \ one, \ b1, 1, rs_b, \ bp, PACKNR ); \ \ /* Loop over the m dimension (MR rows at a time). */ \ for ( i = 0; i < m_iter; ++i ) \ { \ ctype* restrict a2; \ \ m_cur = ( bli_is_not_edge_f( i, m_iter, m_left ) ? MR : m_left ); \ \ /* Compute the addresses of the next panels of A and B. */ \ a2 = a1 + rstep_a; \ if ( bli_is_last_iter( i, m_iter ) ) \ { \ a2 = a_cast; \ } \ \ /* Save address of next panel of A to the auxinfo_t object. */ \ bli_auxinfo_set_next_a( a2, &aux ); \ \ /* Handle interior and edge cases separately. */ \ if ( m_cur == MR && n_cur == NR ) \ { \ /* Invoke the gemm micro-kernel. */ \ gemm_ukr_cast( k, \ alpha_cast, \ a1, \ bp, \ beta_cast, \ c11, rs_c, cs_c, \ &aux ); \ } \ else \ { \ /* Invoke the gemm micro-kernel. */ \ gemm_ukr_cast( k, \ alpha_cast, \ a1, \ bp, \ zero, \ ct, rs_ct, cs_ct, \ &aux ); \ \ /* Scale the bottom edge of C and add the result from above. */ \ PASTEMAC(ch,xpbys_mxn)( m_cur, n_cur, \ ct, rs_ct, cs_ct, \ beta_cast, \ c11, rs_c, cs_c ); \ } \ \ a1 += rstep_a; \ c11 += rstep_c; \ } \ \ b1 += cstep_b; \ c1 += cstep_c; \ } \ \ /*PASTEMAC(ch,fprintm)( stdout, "gemm_ker_var5: b1", k, NR, b1, NR, 1, "%4.1f", "" ); \ PASTEMAC(ch,fprintm)( stdout, "gemm_ker_var5: a1", MR, k, a1, 1, MR, "%4.1f", "" );*/ \ } INSERT_GENTFUNC_BASIC( gemm_ker_var5, gemm_ukr_t )