/* BLIS An object-based framework for developing high-performance BLAS-like libraries. Copyright (C) 2014, The University of Texas at Austin Copyright (C) 2018 - 2019, Advanced Micro Devices, Inc. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. - Neither the name(s) of the copyright holder(s) nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "blis.h" void bli_trmm_rl_ker_var2 ( const obj_t* a, const obj_t* b, const obj_t* c, const cntx_t* cntx, const cntl_t* cntl, thrinfo_t* thread_par ) { const num_t dt = bli_obj_exec_dt( c ); const dim_t dt_size = bli_dt_size( dt ); doff_t diagoffb = bli_obj_diag_offset( b ); const pack_t schema_a = bli_obj_pack_schema( a ); const pack_t schema_b = bli_obj_pack_schema( b ); dim_t m = bli_obj_length( c ); dim_t n = bli_obj_width( c ); dim_t k = bli_obj_width( a ); const void* buf_a = bli_obj_buffer_at_off( a ); const inc_t cs_a = bli_obj_col_stride( a ); const dim_t pd_a = bli_obj_panel_dim( a ); const inc_t ps_a = bli_obj_panel_stride( a ); const void* buf_b = bli_obj_buffer_at_off( b ); const inc_t rs_b = bli_obj_row_stride( b ); const dim_t pd_b = bli_obj_panel_dim( b ); const inc_t ps_b = bli_obj_panel_stride( b ); void* buf_c = bli_obj_buffer_at_off( c ); const inc_t rs_c = bli_obj_row_stride( c ); const inc_t cs_c = bli_obj_col_stride( c ); // Detach and multiply the scalars attached to A and B. obj_t scalar_a, scalar_b; bli_obj_scalar_detach( a, &scalar_a ); bli_obj_scalar_detach( b, &scalar_b ); bli_mulsc( &scalar_a, &scalar_b ); // Grab the addresses of the internal scalar buffers for the scalar // merged above and the scalar attached to C. const void* buf_alpha = bli_obj_internal_scalar_buffer( &scalar_b ); const void* buf_beta = bli_obj_internal_scalar_buffer( c ); // Alias some constants to simpler names. const dim_t MR = pd_a; const dim_t NR = pd_b; const dim_t PACKMR = cs_a; const dim_t PACKNR = rs_b; // Query the context for the micro-kernel address and cast it to its // function pointer type. gemm_ukr_vft gemm_ukr = bli_cntx_get_l3_vir_ukr_dt( dt, BLIS_GEMM_UKR, cntx ); const void* one = bli_obj_buffer_for_const( dt, &BLIS_ONE ); const char* a_cast = buf_a; const char* b_cast = buf_b; char* c_cast = buf_c; const char* alpha_cast = buf_alpha; const char* beta_cast = buf_beta; /* Assumptions/assertions: rs_a == 1 cs_a == PACKMR pd_a == MR ps_a == stride to next micro-panel of A rs_b == PACKNR cs_b == 1 pd_b == NR ps_b == stride to next micro-panel of B rs_c == (no assumptions) cs_c == (no assumptions) */ // Safety trap: Certain indexing within this macro-kernel does not // work as intended if both MR and NR are odd. if ( ( bli_is_odd( PACKMR ) && bli_is_odd( NR ) ) || ( bli_is_odd( PACKNR ) && bli_is_odd( MR ) ) ) bli_abort(); // If any dimension is zero, return immediately. if ( bli_zero_dim3( m, n, k ) ) return; // Safeguard: If the current panel of B is entirely above the diagonal, // it is implicitly zero. So we do nothing. if ( bli_is_strictly_above_diag_n( diagoffb, k, n ) ) return; // If there is a zero region above where the diagonal of B intersects // the left edge of the panel, adjust the pointer to A and treat this // case as if the diagonal offset were zero. Note that we don't need to // adjust the pointer to B since packm would have simply skipped over // the region that was not stored. if ( diagoffb < 0 ) { k += diagoffb; a_cast -= diagoffb * PACKMR * dt_size; diagoffb = 0; } // If there is a zero region to the right of where the diagonal // of B intersects the bottom of the panel, shrink it to prevent // "no-op" iterations from executing. if ( diagoffb + k < n ) { n = diagoffb + k; } // Compute number of primary and leftover components of the m and n // dimensions. const dim_t n_iter = n / NR + ( n % NR ? 1 : 0 ); const dim_t n_left = n % NR; const dim_t m_iter = m / MR + ( m % MR ? 1 : 0 ); const dim_t m_left = m % MR; // Determine some increments used to step through A, B, and C. const inc_t rstep_a = ps_a * dt_size; const inc_t cstep_b = ps_b * dt_size; const inc_t rstep_c = rs_c * MR * dt_size; const inc_t cstep_c = cs_c * NR * dt_size; auxinfo_t aux; // Save the pack schemas of A and B to the auxinfo_t object. bli_auxinfo_set_schema_a( schema_a, &aux ); bli_auxinfo_set_schema_b( schema_b, &aux ); // The 'thread' argument points to the thrinfo_t node for the 2nd (jr) // loop around the microkernel while the 'caucus' points to the thrinfo_t // node for the 1st loop (ir). thrinfo_t* thread = bli_thrinfo_sub_node( thread_par ); thrinfo_t* caucus = bli_thrinfo_sub_node( thread ); // Query the number of threads and thread ids for each loop. //const dim_t jr_nt = bli_thrinfo_n_way( thread ); //const dim_t jr_tid = bli_thrinfo_work_id( thread ); //const dim_t ir_nt = bli_thrinfo_n_way( caucus ); //const dim_t ir_tid = bli_thrinfo_work_id( caucus ); dim_t jr_start, jr_end, jr_inc; dim_t ir_start, ir_end, ir_inc; // Determine the thread range and increment for the 2nd and 1st loops. // NOTE: The definition of bli_thread_range_jrir() will depend on whether // slab or round-robin partitioning was requested at configure-time. // NOTE: Parallelism in the 1st loop is disabled for now. bli_thread_range_jrir( thread, n_iter, 1, FALSE, &jr_start, &jr_end, &jr_inc ); bli_thread_range_jrir( caucus, m_iter, 1, FALSE, &ir_start, &ir_end, &ir_inc ); const char* b1 = b_cast; // char* c1 = c_cast; // Loop over the n dimension (NR columns at a time). for ( dim_t j = jr_start; j < jr_end; j += jr_inc ) { const char* a1 = a_cast; char* c1 = c_cast + j * cstep_c; char* c11 = c1; const doff_t diagoffb_j = diagoffb - ( doff_t )j*NR; const dim_t n_cur = ( bli_is_not_edge_f( j, n_iter, n_left ) ? NR : n_left ); // Determine the offset to the beginning of the panel that // was packed so we can index into the corresponding location // in A. Then compute the length of that panel. const dim_t off_b1121 = bli_max( -diagoffb_j, 0 ); const dim_t k_b1121 = k - off_b1121; // Initialize our next panel of B to be the current panel of B. const char* b2 = b1; // If the current panel of B intersects the diagonal, scale C // by beta. If it is strictly below the diagonal, scale by one. // This allows the current macro-kernel to work for both trmm // and trmm3. if ( bli_intersects_diag_n( diagoffb_j, k, NR ) ) { // Compute the panel stride for the current diagonal- // intersecting micro-panel. inc_t ps_b_cur = k_b1121 * PACKNR; ps_b_cur += ( bli_is_odd( ps_b_cur ) ? 1 : 0 ); ps_b_cur *= dt_size; // Loop over the m dimension (MR rows at a time). for ( dim_t i = 0; i < m_iter; ++i ) //for ( dim_t i = ir_start; i < ir_end; i += ir_inc ) { const dim_t m_cur = ( bli_is_not_edge_f( i, m_iter, m_left ) ? MR : m_left ); const char* a1_i = a1 + off_b1121 * PACKMR * dt_size; // Compute the addresses of the next panels of A and B. const char* a2 = bli_trmm_get_next_a_upanel( a1, rstep_a, 1 ); if ( bli_is_last_iter( i, m_iter, 0, 1 ) ) { a2 = a_cast; b2 = bli_trmm_get_next_b_upanel( b1, cstep_b, jr_inc ); //if ( bli_is_last_iter( j, n_iter, jr_tid, jr_nt ) ) // b2 = b_cast; } // Save addresses of next panels of A and B to the auxinfo_t // object. bli_auxinfo_set_next_a( a2, &aux ); bli_auxinfo_set_next_b( b2, &aux ); // Invoke the gemm micro-kernel. gemm_ukr ( m_cur, n_cur, k_b1121, ( void* )alpha_cast, ( void* )a1_i, ( void* )b1, ( void* )beta_cast, c11, rs_c, cs_c, &aux, ( cntx_t* )cntx ); a1 += rstep_a; c11 += rstep_c; } b1 += ps_b_cur; } else if ( bli_is_strictly_below_diag_n( diagoffb_j, k, NR ) ) { // Loop over the m dimension (MR rows at a time). for ( dim_t i = 0; i < m_iter; ++i ) { const dim_t m_cur = ( bli_is_not_edge_f( i, m_iter, m_left ) ? MR : m_left ); // Compute the addresses of the next panels of A and B. const char* a2 = bli_trmm_get_next_a_upanel( a1, rstep_a, 1 ); if ( bli_is_last_iter( i, m_iter, 0, 1 ) ) { a2 = a_cast; b2 = bli_trmm_get_next_b_upanel( b1, cstep_b, jr_inc ); //if ( bli_is_last_iter( j, n_iter, jr_tid, jr_nt ) ) // b2 = b_cast; } // Save addresses of next panels of A and B to the auxinfo_t // object. bli_auxinfo_set_next_a( a2, &aux ); bli_auxinfo_set_next_b( b2, &aux ); // Invoke the gemm micro-kernel. gemm_ukr ( m_cur, n_cur, k, ( void* )alpha_cast, ( void* )a1, ( void* )b1, ( void* )one, c11, rs_c, cs_c, &aux, ( cntx_t* )cntx ); a1 += rstep_a; c11 += rstep_c; } b1 += cstep_b; } //c1 += cstep_c; } } //PASTEMAC(ch,fprintm)( stdout, "trmm_rl_ker_var2: a1", MR, k_b1121, a1, 1, MR, "%4.1f", "" ); //PASTEMAC(ch,fprintm)( stdout, "trmm_rl_ker_var2: b1", k_b1121, NR, b1_i, NR, 1, "%4.1f", "" );