/* BLIS An object-based framework for developing high-performance BLAS-like libraries. Copyright (C) 2014, The University of Texas at Austin Copyright (C) 2020, Linaro Limited Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. - Neither the name(s) of the copyright holder(s) nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "blis.h" #include #if !defined(BLIS_FAMILY_A64FX) #include // assumption: // SVE vector length = 512 bits. // TODO: // 2-rows -> 3 vectors packing and use predicator only in odd num of rows to be packed. // prefetching is needed. void bli_dpackm_armsve512_int_12xk ( conj_t conja, pack_t schema, dim_t cdim_, dim_t n_, dim_t n_max_, double* restrict kappa, double* restrict a, inc_t inca_, inc_t lda_, double* restrict p, inc_t ldp_, cntx_t* restrict cntx ) { const int64_t cdim = cdim_; const int64_t mnr = 12; const int64_t n = n_; const int64_t n_max = n_max_; const int64_t inca = inca_; const int64_t lda = lda_; const int64_t ldp = ldp_; double* restrict alpha1 = a; double* restrict alpha1_8 = alpha1 + 8 * inca; double* restrict alpha1_p4 = alpha1 + 4 * inca; double* restrict alpha1_m4 = alpha1 - 4 * inca; double* restrict pi1 = p; const svbool_t all_active = svptrue_b64(); const svbool_t first_half_active = svwhilelt_b64(0, 4); const svbool_t last_half_active = svnot_z(all_active, first_half_active); svfloat64_t z_a0; svfloat64_t z_a8; svfloat64_t z_a8_lh; svfloat64_t z_a16; svuint64_t z_index; // creating index for gather/scatter // with each element as: 0, 1*inca, 2*inca, 3*inca z_index = svindex_u64( 0, inca * sizeof( double ) ); if ( cdim == mnr ) { if ( bli_deq1( *kappa ) ) { if ( inca == 1 ) // continous memory. packA style { dim_t k = n; // 2 pack into 3 case. if ( ldp == mnr ) { for ( ; k > 1; k -= 2 ) { // load 12 continuous elments from *a z_a0 = svld1_f64( all_active, alpha1 ); z_a8 = svld1_vnum_f64( first_half_active, alpha1, 1 ); // forward address - 0 to 1 alpha1 += lda; alpha1_p4 = alpha1 + 4 * inca; alpha1_m4 = alpha1 - 4 * inca; // load 12 continuous elments from *a, filling last half of z8. z_a8_lh = svld1_f64( last_half_active, alpha1_m4 ); z_a8 = svadd_f64_z( all_active, z_a8, z_a8_lh ); z_a16 = svld1_f64( all_active, alpha1_p4 ); // stored packed data into *p svst1_f64( all_active, pi1, z_a0 ); svst1_vnum_f64( all_active, pi1, 1, z_a8 ); svst1_vnum_f64( all_active, pi1, 2, z_a16 ); // forward address - 1 to 0 alpha1 += lda; alpha1_8 = alpha1 + 8 * inca; pi1 += 2 * ldp; } } // line-by-line packing case. for ( ; k != 0; --k ) { // load 12 continuous elments from *a z_a0 = svld1_f64( all_active, alpha1 ); z_a8 = svld1_vnum_f64( first_half_active, alpha1, 1 ); // store them into *p svst1_f64( all_active, pi1, z_a0 ); svst1_vnum_f64( first_half_active, pi1, 1, z_a8 ); alpha1 += lda; alpha1_8 = alpha1 + 8 * inca; pi1 += ldp; } } else // gather/scatter load/store. packB style { dim_t k = n; if ( ldp == mnr ) { for ( ; k > 1; k -= 2 ) { // gather load from *a z_a0 = svld1_gather_u64offset_f64( all_active, alpha1, z_index ); z_a8 = svld1_gather_u64offset_f64( first_half_active, alpha1_8, z_index ); // forward address - 0 to 1 alpha1 += lda; alpha1_p4 = alpha1 + 4 * inca; alpha1_m4 = alpha1 - 4 * inca; // gather load from *a, filling last half of z8. z_a8_lh = svld1_gather_u64offset_f64( last_half_active, alpha1_m4, z_index ); z_a8 = svadd_f64_z( all_active, z_a8, z_a8_lh ); z_a16 = svld1_gather_u64offset_f64( all_active, alpha1_p4, z_index ); // stored packed data into *p svst1_f64( all_active, pi1, z_a0 ); svst1_vnum_f64( all_active, pi1, 1, z_a8 ); svst1_vnum_f64( all_active, pi1, 2, z_a16 ); // forward address - 1 to 0 alpha1 += lda; alpha1_8 = alpha1 + 8 * inca; pi1 += 2 * ldp; } } for ( ; k != 0; --k ) { // gather load from *a z_a0 = svld1_gather_u64offset_f64( all_active, alpha1, z_index ); z_a8 = svld1_gather_u64offset_f64( first_half_active, alpha1_8, z_index ); // scatter store into *p svst1_f64( all_active, pi1, z_a0 ); svst1_vnum_f64( first_half_active, pi1, 1, z_a8 ); alpha1 += lda; alpha1_8 = alpha1 + 8 * inca; pi1 += ldp; } } } else // *kappa != 1.0 { // load kappa into vector svfloat64_t z_kappa; z_kappa = svdup_f64( *kappa ); if ( inca == 1 ) // continous memory. packA style { dim_t k = n; if ( ldp == mnr ) { for ( ; k > 1; k -= 2 ) { // load 12 continuous elments from *a z_a0 = svld1_f64( all_active, alpha1 ); z_a8 = svld1_vnum_f64( first_half_active, alpha1, 1 ); // forward address - 0 to 1 alpha1 += lda; alpha1_p4 = alpha1 + 4 * inca; alpha1_m4 = alpha1 - 4 * inca; // load 12 continuous elments from *a, filling last half of z8. z_a8_lh = svld1_f64( last_half_active, alpha1_m4 ); z_a8 = svadd_f64_z( all_active, z_a8, z_a8_lh ); z_a16 = svld1_f64( all_active, alpha1_p4 ); // multiply by *kappa z_a0 = svmul_lane_f64( z_a0, z_kappa, 0 ); z_a8 = svmul_lane_f64( z_a8, z_kappa, 0 ); z_a16 = svmul_lane_f64( z_a16, z_kappa, 0 ); // stored packed data into *p svst1_f64( all_active, pi1, z_a0 ); svst1_vnum_f64( all_active, pi1, 1, z_a8 ); svst1_vnum_f64( all_active, pi1, 2, z_a16 ); // forward address - 1 to 0 alpha1 += lda; alpha1_8 = alpha1 + 8 * inca; pi1 += 2 * ldp; } } for ( ; k != 0; --k ) { // load 12 continuous elments from *a z_a0 = svld1_f64( all_active, alpha1 ); z_a8 = svld1_vnum_f64( first_half_active, alpha1, 1 ); // multiply by *kappa z_a0 = svmul_lane_f64( z_a0, z_kappa, 0 ); z_a8 = svmul_lane_f64( z_a8, z_kappa, 0 ); // store them into *p svst1_f64( all_active, pi1, z_a0 ); svst1_vnum_f64( first_half_active, pi1, 1, z_a8 ); alpha1 += lda; alpha1_8 = alpha1 + 8 * inca; pi1 += ldp; } } else // gather/scatter load/store. packB style { dim_t k = n; if ( ldp == mnr ) { for ( ; k > 1; k -= 2 ) { // gather load from *a z_a0 = svld1_gather_u64offset_f64( all_active, alpha1, z_index ); z_a8 = svld1_gather_u64offset_f64( first_half_active, alpha1_8, z_index ); // forward address - 0 to 1 alpha1 += lda; alpha1_p4 = alpha1 + 4 * inca; alpha1_m4 = alpha1 - 4 * inca; // gather load from *a, filling last half of z8. z_a8_lh = svld1_gather_u64offset_f64( last_half_active, alpha1_m4, z_index ); z_a8 = svadd_f64_z( all_active, z_a8, z_a8_lh ); z_a16 = svld1_gather_u64offset_f64( all_active, alpha1_p4, z_index ); // multiply by *kappa z_a0 = svmul_lane_f64( z_a0, z_kappa, 0 ); z_a8 = svmul_lane_f64( z_a8, z_kappa, 0 ); z_a16 = svmul_lane_f64( z_a16, z_kappa, 0 ); // stored packed data into *p svst1_f64( all_active, pi1, z_a0 ); svst1_vnum_f64( all_active, pi1, 1, z_a8 ); svst1_vnum_f64( all_active, pi1, 2, z_a16 ); // forward address - 1 to 0 alpha1 += lda; alpha1_8 = alpha1 + 8 * inca; pi1 += 2 * ldp; } } for ( ; k != 0; --k ) { // gather load from *a z_a0 = svld1_gather_u64offset_f64( all_active, alpha1, z_index ); z_a8 = svld1_gather_u64offset_f64( first_half_active, alpha1_8, z_index ); // multiply by *kappa z_a0 = svmul_lane_f64( z_a0, z_kappa, 0 ); z_a8 = svmul_lane_f64( z_a8, z_kappa, 0 ); // scatter store into *p svst1_f64( all_active, pi1, z_a0 ); svst1_vnum_f64( first_half_active, pi1, 1, z_a8 ); alpha1 += lda; alpha1_8 = alpha1 + 8 * inca; pi1 += ldp; } } } // end of if ( *kappa == 1.0 ) } else // if ( cdim < mnr ) { bli_dscal2m_ex ( 0, BLIS_NONUNIT_DIAG, BLIS_DENSE, ( trans_t )conja, cdim, n, kappa, a, inca, lda, p, 1, ldp, cntx, NULL ); // if ( cdim < mnr ) { const dim_t i = cdim; const dim_t m_edge = mnr - i; const dim_t n_edge = n_max; double* restrict p_edge = p + (i )*1; bli_dset0s_mxn ( m_edge, n_edge, p_edge, 1, ldp ); } } if ( n < n_max ) { const dim_t j = n; const dim_t m_edge = mnr; const dim_t n_edge = n_max - j; double* restrict p_edge = p + (j )*ldp; bli_dset0s_mxn ( m_edge, n_edge, p_edge, 1, ldp ); } } #endif // __has_include()