/* BLIS An object-based framework for developing high-performance BLAS-like libraries. Copyright (C) 2014, The University of Texas at Austin Copyright (C) 2019, Forschunszentrum Juelich Copyright (C) 2020, The University of Tokyo Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. - Neither the name(s) of the copyright holder(s) nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "blis.h" // Single-precision composite instructions. #include "armsve_asm_macros_scomplex.h" // 2vx10 microkernels. #include "armsve_asm_2vx10cmplx.h" void bli_cgemm_armsve_asm_2vx10_unindexed ( dim_t m, \ dim_t n, \ dim_t k, \ const void* alpha, \ const void* a, \ const void* b, \ const void* beta, \ void* c, inc_t rs_c0, inc_t cs_c0, \ auxinfo_t* data, \ const cntx_t* cntx \ ) { const void* a_next = bli_auxinfo_next_a( data ); const void* b_next = bli_auxinfo_next_b( data ); // Typecast local copies of integers in case dim_t and inc_t are a // different size than is expected by load instructions. uint64_t k_mker = k / 4; uint64_t k_left = k % 4; uint64_t rs_c = rs_c0; uint64_t cs_c = cs_c0; uint64_t info = 0; GEMM_UKR_SETUP_CT_ANY( c, m, 10, false ); __asm__ volatile ( " whilelo p0.s, xzr, %12 \n\t" // " ldr x0, %[a] \n\t" // " ldr x1, %[b] \n\t" " mov x2, xzr \n\t" " incw x2, ALL, MUL #1 \n\t" // Column-skip of A. " mov x3, #10 \n\t" // Row-skip of B. " \n\t" // " ldr x2, %[c] \n\t" // " ldr x3, %[rs_c] \n\t" // Row-skip of C. // " ldr x4, %[cs_c] \n\t" // Column-skip of C. #ifdef _A64FX " mov x16, 0x1 \n\t" // Tag A address. " lsl x16, x16, #56 \n\t" " orr %0, %0, x16 \n\t" " mov x16, 0x2 \n\t" // Tag B address. " lsl x16, x16, #56 \n\t" " orr %1, %1, x16 \n\t" " mov x16, 0x3 \n\t" // Tag C address. " lsl x16, x16, #56 \n\t" " orr %2, %2, x16 \n\t" #endif " \n\t" " mov x16, #8 \n\t" // Multiply some address skips by sizeof(scomplex). " madd x2, x16, x2, xzr \n\t" // cs_a " madd x3, x16, x3, xzr \n\t" // rs_b " madd %4, x16, %4, xzr \n\t" // cs_c " \n\t" // " ldr x5, %[k_mker] \n\t" // Number of loops. // " ldr x6, %[k_left] \n\t" " \n\t" LABEL(LOAD_ABC) " cmp %5, #0 \n\t" // Don't preload if no microkernel there. BEQ(END_CCOL_PRFM) " \n\t" " ld1rw z20.s, p0/z, [%1, 4*0] \n\t" // Load B's real 8/10, no imaginary. " ld1rw z21.s, p0/z, [%1, 4*2] \n\t" " ld1rw z22.s, p0/z, [%1, 4*4] \n\t" " ld1rw z23.s, p0/z, [%1, 4*6] \n\t" " ld1rw z24.s, p0/z, [%1, 4*8] \n\t" " ld1rw z25.s, p0/z, [%1, 4*10] \n\t" " ld1rw z26.s, p0/z, [%1, 4*12] \n\t" " ld1rw z27.s, p0/z, [%1, 4*14] \n\t" " \n\t" GEMM_ACOLCMPLX_CONTIGUOUS_LOAD_FWD(z28,z29,p0,%0,x2) " \n\t" LABEL(CCOL_PRFM) " cmp %3, #1 \n\t" BNE(END_CCOL_PRFM) // Do not prefetch for generic C storage. " mov x16, %2 \n\t" " prfm PLDL1KEEP, [x16] \n\t" " add x16, x16, %4 \n\t" " prfm PLDL1KEEP, [x16] \n\t" " add x16, x16, %4 \n\t" " prfm PLDL1KEEP, [x16] \n\t" " add x16, x16, %4 \n\t" " prfm PLDL1KEEP, [x16] \n\t" " add x16, x16, %4 \n\t" " prfm PLDL1KEEP, [x16] \n\t" " add x16, x16, %4 \n\t" " prfm PLDL1KEEP, [x16] \n\t" " add x16, x16, %4 \n\t" " prfm PLDL1KEEP, [x16] \n\t" " add x16, x16, %4 \n\t" " prfm PLDL1KEEP, [x16] \n\t" " add x16, x16, %4 \n\t" " prfm PLDL1KEEP, [x16] \n\t" " add x16, x16, %4 \n\t" " prfm PLDL1KEEP, [x16] \n\t" LABEL(END_CCOL_PRFM) " \n\t" CLEAR_COL20(z0,z1,z2,z3,z4,z5,z6,z7,z8,z9,z10,z11,z12,z13,z14,z15,z16,z17,z18,z19) " \n\t" " cmp %5, #0 \n\t" // If no 4-microkernel can be applied. BEQ(K_LEFT_LOOP) " \n\t" LABEL(K_MKER_LOOP) " \n\t" GEMM_ACOLCMPLX_CONTIGUOUS_LOAD_FWD(z30,z31,p0,%0,x2) GEMM_2VX10CMPLX_MKER_LOOP_PLAIN_C_1(z0,z2,z4,z6,z8,z10,z12,z14,z16,z18,z1,z3,z5,z7,z9,z11,z13,z15,z17,z19,p0,z28,z29,z20,z21,z22,z23,z24,z25,z26,z27,%1,x3) " \n\t" GEMM_ACOLCMPLX_CONTIGUOUS_LOAD_FWD(z28,z29,p0,%0,x2) GEMM_2VX10CMPLX_MKER_LOOP_PLAIN_C_2(z0,z2,z4,z6,z8,z10,z12,z14,z16,z18,z1,z3,z5,z7,z9,z11,z13,z15,z17,z19,p0,z30,z31,z20,z21,z22,z23,z24,z25,z26,z27,%1,x3) " \n\t" GEMM_ACOLCMPLX_CONTIGUOUS_LOAD_FWD(z30,z31,p0,%0,x2) GEMM_2VX10CMPLX_MKER_LOOP_PLAIN_C_1(z0,z2,z4,z6,z8,z10,z12,z14,z16,z18,z1,z3,z5,z7,z9,z11,z13,z15,z17,z19,p0,z28,z29,z20,z21,z22,z23,z24,z25,z26,z27,%1,x3) " \n\t" " subs %5, %5, #1 \n\t" // Decrease counter before final replica. BEQ(FIN_MKER_LOOP) // Branch early to avoid reading excess mem. " \n\t" GEMM_ACOLCMPLX_CONTIGUOUS_LOAD_FWD(z28,z29,p0,%0,x2) GEMM_2VX10CMPLX_MKER_LOOP_PLAIN_C_2(z0,z2,z4,z6,z8,z10,z12,z14,z16,z18,z1,z3,z5,z7,z9,z11,z13,z15,z17,z19,p0,z30,z31,z20,z21,z22,z23,z24,z25,z26,z27,%1,x3) BRANCH(K_MKER_LOOP) " \n\t" LABEL(FIN_MKER_LOOP) GEMM_2VX10CMPLX_MKER_LOOP_PLAIN_C_2_RESIDUAL(z0,z2,z4,z6,z8,z10,z12,z14,z16,z18,z1,z3,z5,z7,z9,z11,z13,z15,z17,z19,p0,z30,z31,z20,z21,z22,z23,z24,z25,z26,z27,%1,x3) " \n\t" LABEL(K_LEFT_LOOP) " cmp %6, #0 \n\t" // End of execution. BEQ(WRITE_MEM_PREP) " \n\t" GEMM_ACOLCMPLX_CONTIGUOUS_LOAD_FWD(z28,z29,p0,%0,x2) " ld1rw z20.s, p0/z, [%1, 4*0] \n\t" // Load B's real 8/10, no imaginary. " ld1rw z21.s, p0/z, [%1, 4*2] \n\t" " ld1rw z22.s, p0/z, [%1, 4*4] \n\t" " ld1rw z23.s, p0/z, [%1, 4*6] \n\t" " ld1rw z24.s, p0/z, [%1, 4*8] \n\t" " ld1rw z25.s, p0/z, [%1, 4*10] \n\t" " ld1rw z26.s, p0/z, [%1, 4*12] \n\t" " ld1rw z27.s, p0/z, [%1, 4*14] \n\t" GEMM_2VX10CMPLX_MKER_LOOP_PLAIN_C_1_RESIDUAL(z0,z2,z4,z6,z8,z10,z12,z14,z16,z18,z1,z3,z5,z7,z9,z11,z13,z15,z17,z19,p0,z28,z29,z20,z21,z22,z23,z24,z25,z26,z27,%1,x3) " sub %6, %6, #1 \n\t" BRANCH(K_LEFT_LOOP) " \n\t" LABEL(WRITE_MEM_PREP) " \n\t" // " ldr x7, %[alpha] \n\t" // Load alpha & beta (address). // " ldr x8, %[beta] \n\t" " ld1rw z28.s, p0/z, [%7] \n\t" // Real(alpha). " ld1rw z29.s, p0/z, [%7, 4] \n\t" // Imag(alpha). " ld1rw z30.s, p0/z, [%8] \n\t" // Real(beta). " ld1rw z31.s, p0/z, [%8, 4] \n\t" // Imag(beta). " \n\t" LABEL(PREFETCH_ABNEXT) // " ldr x9, %[a_next] \n\t" // " ldr x10, %[b_next] \n\t" #ifdef _A64FX " mov x16, 0x1 \n\t" // Tag A address. " lsl x16, x16, #56 \n\t" " orr %9, %9, x16 \n\t" " mov x16, 0x2 \n\t" // Tag B address. " lsl x16, x16, #56 \n\t" " orr %10, %10, x16 \n\t" #endif " prfm PLDL1STRM, [%9] \n\t" " prfm PLDL1STRM, [%9, 256*1] \n\t" " prfm PLDL1STRM, [%10] \n\t" " prfm PLDL1STRM, [%10, 256*1] \n\t" " \n\t" LABEL(WRITE_MEM) " fmov s27, #1.0 \n\t" " fcmp s29, #0.0 \n\t" // Whether Imag(alpha) == 0. " fccmp s28, s27, 0, eq \n\t" // Whether Real(alpha) == 1. BEQ(UNIT_ALPHA) " \n\t" GEMM_FMULCMPLX_COL2(z20,z21,z22,z23,p0,z0 ,z1 ,z2 ,z3 ,z28,z29) GEMM_FMULCMPLX_COL2(z24,z25,z26,z27,p0,z4 ,z5 ,z6 ,z7 ,z28,z29) GEMM_FMULCMPLX_COL2(z0 ,z1 ,z2 ,z3 ,p0,z8, z9, z10,z11,z28,z29) GEMM_FMULCMPLX_COL2(z4 ,z5 ,z6 ,z7 ,p0,z12,z13,z14,z15,z28,z29) GEMM_FMULCMPLX_COL2(z8 ,z9 ,z10,z11,p0,z16,z17,z18,z19,z28,z29) BRANCH(WRITE_MEM_EXEC) " \n\t" LABEL(UNIT_ALPHA) MOV_COL2(z20,z21,z22,z23,z0 ,z1 ,z2 ,z3 ) MOV_COL2(z24,z25,z26,z27,z4 ,z5 ,z6 ,z7 ) MOV_COL2(z0 ,z1 ,z2 ,z3 ,z8, z9, z10,z11) MOV_COL2(z4 ,z5 ,z6 ,z7 ,z12,z13,z14,z15) MOV_COL2(z8 ,z9 ,z10,z11,z16,z17,z18,z19) " \n\t" LABEL(WRITE_MEM_EXEC) " mov x9, %2 \n\t" // C address for loading. " \n\t" // C address for storing is %2 itself. " cmp %3, #1 \n\t" BNE(WRITE_MEM_G) " \n\t" LABEL(WRITE_MEM_C) " fmov s29, wzr \n\t" " fcmp s31, #0.0 \n\t" // Whether Imag(beta) == 0. " fccmp s30, s29, 0, eq \n\t" // Whether Real(beta) == 0. BEQ(ZERO_BETA_C_0_1_2_3) GEMM_CCMPLX_LOAD_COL2_C(z12,z13,z14,z15,p0,x9,%4) GEMM_CCMPLX_LOAD_COL2_C(z16,z17,z18,z19,p0,x9,%4) GEMM_FMLACMPLX_COL2(z20,z21,z22,z23,p0,z12,z13,z14,z15,z30,z31) GEMM_FMLACMPLX_COL2(z24,z25,z26,z27,p0,z16,z17,z18,z19,z30,z31) LABEL(ZERO_BETA_C_0_1_2_3) GEMM_CCMPLX_STORE_COL2_C(z20,z21,z22,z23,p0,%2,%4) GEMM_CCMPLX_STORE_COL2_C(z24,z25,z26,z27,p0,%2,%4) " \n\t" BEQ(ZERO_BETA_C_4_5_6_7_8_9) GEMM_CCMPLX_LOAD_COL2_C(z12,z13,z14,z15,p0,x9,%4) GEMM_CCMPLX_LOAD_COL2_C(z16,z17,z18,z19,p0,x9,%4) GEMM_CCMPLX_LOAD_COL2_C(z20,z21,z22,z23,p0,x9,%4) GEMM_FMLACMPLX_COL2(z0 ,z1 ,z2 ,z3 ,p0,z12,z13,z14,z15,z30,z31) GEMM_FMLACMPLX_COL2(z4 ,z5 ,z6 ,z7 ,p0,z16,z17,z18,z19,z30,z31) GEMM_FMLACMPLX_COL2(z8 ,z9 ,z10,z11,p0,z20,z21,z22,z23,z30,z31) LABEL(ZERO_BETA_C_4_5_6_7_8_9) GEMM_CCMPLX_STORE_COL2_C(z0 ,z1 ,z2 ,z3 ,p0,%2,%4) GEMM_CCMPLX_STORE_COL2_C(z4 ,z5 ,z6 ,z7 ,p0,%2,%4) GEMM_CCMPLX_STORE_COL2_C(z8 ,z9 ,z10,z11,p0,%2,%4) BRANCH(END_WRITE_MEM) // General-storage case -- Mainly for Column-storage or other aligned cases. LABEL(WRITE_MEM_G) " add %3, %3, %3 \n\t" // Skips passed to index is multiplied by 2, " index z28.s, wzr, %w3 \n\t" // s.t. 2*sizeof(float) = 2*4 = 8. " fmov s29, wzr \n\t" " fcmp s31, #0.0 \n\t" // Whether Imag(beta) == 0. " fccmp s30, s29, 0, eq \n\t" // Whether Real(beta) == 0. BEQ(ZERO_BETA_G_0_1_2_3) GEMM_CCMPLX_LOAD_COL2_G(z12,z13,z14,z15,p0,z28,x9,%4,x16) GEMM_CCMPLX_LOAD_COL2_G(z16,z17,z18,z19,p0,z28,x9,%4,x16) GEMM_FMLACMPLX_COL2(z20,z21,z22,z23,p0,z12,z13,z14,z15,z30,z31) GEMM_FMLACMPLX_COL2(z24,z25,z26,z27,p0,z16,z17,z18,z19,z30,z31) LABEL(ZERO_BETA_G_0_1_2_3) GEMM_CCMPLX_STORE_COL2_G(z20,z21,z22,z23,p0,z28,%2,%4,x16) GEMM_CCMPLX_STORE_COL2_G(z24,z25,z26,z27,p0,z28,%2,%4,x16) " \n\t" BEQ(ZERO_BETA_G_4_5_6_7_8_9) GEMM_CCMPLX_LOAD_COL2_G(z12,z13,z14,z15,p0,z28,x9,%4,x16) GEMM_CCMPLX_LOAD_COL2_G(z16,z17,z18,z19,p0,z28,x9,%4,x16) GEMM_CCMPLX_LOAD_COL2_G(z20,z21,z22,z23,p0,z28,x9,%4,x16) GEMM_FMLACMPLX_COL2(z0 ,z1 ,z2 ,z3 ,p0,z12,z13,z14,z15,z30,z31) GEMM_FMLACMPLX_COL2(z4 ,z5 ,z6 ,z7 ,p0,z16,z17,z18,z19,z30,z31) GEMM_FMLACMPLX_COL2(z8 ,z9 ,z10,z11,p0,z20,z21,z22,z23,z30,z31) LABEL(ZERO_BETA_G_4_5_6_7_8_9) GEMM_CCMPLX_STORE_COL2_G(z0 ,z1 ,z2 ,z3 ,p0,z28,%2,%4,x16) GEMM_CCMPLX_STORE_COL2_G(z4 ,z5 ,z6 ,z7 ,p0,z28,%2,%4,x16) GEMM_CCMPLX_STORE_COL2_G(z8 ,z9 ,z10,z11,p0,z28,%2,%4,x16) " \n\t" LABEL(END_WRITE_MEM) BRANCH(END_EXEC) " \n\t" LABEL(END_EXEC) " mov %11, #0 \n\t" // Return normal. : "+r" (a), // %0 "+r" (b), // %1 "+r" (c), // %2 "+r" (rs_c), // %3 "+r" (cs_c), // %4 "+r" (k_mker), // %5 "+r" (k_left), // %6 "+r" (alpha), // %7 "+r" (beta), // %8 "+r" (a_next), // %9 "+r" (b_next), // %10 "=r" (info) // %11 : "r" (m) // %12 : "x2","x3","x9","x16", "z0","z1","z2","z3","z4","z5","z6","z7", "z8","z9","z10","z11","z12","z13","z14","z15", "z16","z17","z18","z19", "z20","z21","z22","z23", "z24","z25","z26","z27", "z28","z29","z30","z31" ); GEMM_UKR_FLUSH_CT( c ); }