/* BLIS An object-based framework for developing high-performance BLAS-like libraries. Copyright (C) 2014, The University of Texas at Austin Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. - Neither the name(s) of the copyright holder(s) nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "blis.h" void bli_daxpyf_bgq_int ( conj_t conja, conj_t conjx, dim_t m, dim_t b_n, const void* alpha0, const void* a0, inc_t inca, inc_t lda, const void* x0, inc_t incx, void* y0, inc_t incy, const cntx_t* cntx ) { const double* alpha = alpha0; const double* a = a0; const double* x = x0; double* y = y0; const dim_t fusefac = 8; if ( bli_zero_dim2( m, b_n ) ) return; bool use_ref = FALSE; // printf("%d\t%d\t%d\t%d\t%d\t%d\t%d\n", b_n, fusefac, inca, incx, incy, bli_is_unaligned_to( ( siz_t )a, 32 ), bli_is_unaligned_to( ( siz_t )y, 32)); // If there is anything that would interfere with our use of aligned // vector loads/stores, call the reference implementation. if ( ( b_n < fusefac) || inca != 1 || incx != 1 || incy != 1 || bli_is_unaligned_to( ( siz_t )a, 32 ) || bli_is_unaligned_to( ( siz_t )y, 32 ) ) use_ref = TRUE; // Call the reference implementation if needed. if ( use_ref == TRUE ) { // printf("%d\t%d\t%d\t%d\t%d\t%d\n", fusefac, inca, incx, incy, bli_is_unaligned_to( ( siz_t )a, 32 ), bli_is_unaligned_to( ( siz_t )y, 32)); // printf("DEFAULTING TO REFERENCE IMPLEMENTATION\n"); #if 0 axpyf_ker_ft f = bli_cntx_get_ukr_dt( BLIS_DOUBLE, BLIS_AXPYF_KER, cntx ); f ( conja, conjx, m, b_n, alpha0, a0, inca, lda, x0, incx, y0, incy, cntx ); #endif bli_abort(); return; } dim_t m_run = m / 4; dim_t m_left = m % 4; const double* ap0 = a + 0*lda; const double* ap1 = a + 1*lda; const double* ap2 = a + 2*lda; const double* ap3 = a + 3*lda; const double* ap4 = a + 4*lda; const double* ap5 = a + 5*lda; const double* ap6 = a + 6*lda; const double* ap7 = a + 7*lda; double* yp0 = y; double chi0 = *(x + 0*incx); double chi1 = *(x + 1*incx); double chi2 = *(x + 2*incx); double chi3 = *(x + 3*incx); double chi4 = *(x + 4*incx); double chi5 = *(x + 5*incx); double chi6 = *(x + 6*incx); double chi7 = *(x + 7*incx); PASTEMAC2(d,d,scals)( *alpha, chi0 ); PASTEMAC2(d,d,scals)( *alpha, chi1 ); PASTEMAC2(d,d,scals)( *alpha, chi2 ); PASTEMAC2(d,d,scals)( *alpha, chi3 ); PASTEMAC2(d,d,scals)( *alpha, chi4 ); PASTEMAC2(d,d,scals)( *alpha, chi5 ); PASTEMAC2(d,d,scals)( *alpha, chi6 ); PASTEMAC2(d,d,scals)( *alpha, chi7 ); vector4double a0v, a1v, a2v, a3v, a4v, a5v, a6v, a7v; vector4double yv; vector4double chi0v, chi1v, chi2v, chi3v, chi4v, chi5v, chi6v, chi7v; chi0v = vec_splats( chi0 ); chi1v = vec_splats( chi1 ); chi2v = vec_splats( chi2 ); chi3v = vec_splats( chi3 ); chi4v = vec_splats( chi4 ); chi5v = vec_splats( chi5 ); chi6v = vec_splats( chi6 ); chi7v = vec_splats( chi7 ); for ( dim_t i = 0; i < m_run; i += 1 ) { yv = vec_lda( 0 * sizeof(double), &yp0[i*4]); a0v = vec_lda( 0 * sizeof(double), &ap0[i*4]); a1v = vec_lda( 0 * sizeof(double), &ap1[i*4]); a2v = vec_lda( 0 * sizeof(double), &ap2[i*4]); a3v = vec_lda( 0 * sizeof(double), &ap3[i*4]); a4v = vec_lda( 0 * sizeof(double), &ap4[i*4]); a5v = vec_lda( 0 * sizeof(double), &ap5[i*4]); a6v = vec_lda( 0 * sizeof(double), &ap6[i*4]); a7v = vec_lda( 0 * sizeof(double), &ap7[i*4]); yv = vec_madd( chi0v, a0v, yv ); yv = vec_madd( chi1v, a1v, yv ); yv = vec_madd( chi2v, a2v, yv ); yv = vec_madd( chi3v, a3v, yv ); yv = vec_madd( chi4v, a4v, yv ); yv = vec_madd( chi5v, a5v, yv ); yv = vec_madd( chi6v, a6v, yv ); yv = vec_madd( chi7v, a7v, yv ); vec_sta( yv, 0 * sizeof(double), &yp0[i*4]); } for ( dim_t i = 0; i < m_left; ++i ) { yp0[4*m_run + i] += chi0 * ap0[4*m_run + i] + chi1 * ap1[4*m_run + i] + chi2 * ap2[4*m_run + i] + chi3 * ap3[4*m_run + i] + chi4 * ap4[4*m_run + i] + chi5 * ap5[4*m_run + i] + chi6 * ap6[4*m_run + i] + chi7 * ap7[4*m_run + i]; } }